Suppr超能文献

基于激光投射光热成像的结构化加热实现地下缺陷定位

Subsurface Defect Localization by Structured Heating Using Laser Projected Photothermal Thermography.

作者信息

Thiel Erik, Ziegler Mathias

机构信息

Department for Non-Destructive Testing, Thermographic Methods, Bundesanstalt für Materialforschung und -prüfung (BAM).

Department for Non-Destructive Testing, Thermographic Methods, Bundesanstalt für Materialforschung und -prüfung (BAM);

出版信息

J Vis Exp. 2017 May 15(123):55733. doi: 10.3791/55733.

Abstract

The presented method is used to locate subsurface defects oriented perpendicularly to the surface. To achieve this, we create destructively interfering thermal wave fields that are disturbed by the defect. This effect is measured and used to locate the defect. We form the destructively interfering wave fields by using a modified projector. The original light engine of the projector is replaced with a fiber-coupled high-power diode laser. Its beam is shaped and aligned to the projector's spatial light modulator and optimized for optimal optical throughput and homogeneous projection by first characterizing the beam profile, and, second, correcting it mechanically and numerically. A high-performance infrared (IR) camera is set up according to the tight geometrical situation (including corrections of the geometrical image distortions) and the requirement to detect weak temperature oscillations at the sample surface. Data acquisition can be performed once a synchronization between the individual thermal wave field sources, the scanning stage, and the IR camera is established by using a dedicated experimental setup which needs to be tuned to the specific material being investigated. During data post-processing, the relevant information on the presence of a defect below the surface of the sample is extracted. It is retrieved from the oscillating part of the acquired thermal radiation coming from the so-called depletion line of the sample surface. The exact location of the defect is deduced from the analysis of the spatial-temporal shape of these oscillations in a final step. The method is reference-free and very sensitive to changes within the thermal wave field. So far, the method has been tested with steel samples but is applicable to different materials as well, in particular to temperature sensitive materials.

摘要

所提出的方法用于定位垂直于表面的地下缺陷。为实现这一点,我们创建受缺陷干扰的相消干涉热波场。测量这种效应并用于定位缺陷。我们通过使用改进的投影仪来形成相消干涉波场。投影仪的原始光引擎被光纤耦合高功率二极管激光器取代。其光束经过整形并与投影仪的空间光调制器对准,并通过首先表征光束轮廓,其次进行机械和数值校正,以实现最佳光通量和均匀投影而进行优化。根据严格的几何情况(包括校正几何图像失真)以及检测样品表面微弱温度振荡的要求设置高性能红外(IR)相机。一旦通过使用需要针对所研究的特定材料进行调整的专用实验装置在各个热波场源、扫描台和红外相机之间建立同步,即可进行数据采集。在数据后处理期间,提取有关样品表面下方存在缺陷的相关信息。它从来自样品表面所谓耗尽线的采集热辐射的振荡部分中检索出来。在最后一步中,通过分析这些振荡的时空形状来推断缺陷的确切位置。该方法无需参考,对热波场内的变化非常敏感。到目前为止,该方法已在钢样品上进行了测试,但也适用于不同的材料,特别是对温度敏感的材料。

相似文献

3

本文引用的文献

1
Thermal wave interferometry: a potential application of the photoacoustic effect.
Appl Opt. 1982 Jan 1;21(1):49-54. doi: 10.1364/AO.21.000049.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验