Suppr超能文献

基于非下采样轮廓波变换的悬链线图像增强方法中滤波器的选择。

Choosing the filter for catenary image enhancement method based on the non-subsampled contourlet transform.

作者信息

Wu Changdong, Liu Zhigang, Jiang Hua

机构信息

School of Electrical Engineering, Southwest Jiaotong University, Chengdu 610031, China.

School of Computer and Communication Engineering, The E-mei Campus of Southwest Jiaotong University, E-mei 614202, China.

出版信息

Rev Sci Instrum. 2017 May;88(5):054701. doi: 10.1063/1.4983375.

Abstract

The quality of image enhancement plays an important role in the catenary fault diagnosis system based on the image processing technique. It is necessary to enhance the low contrast image of catenary for better detecting the state of catenary part. The Non-subsampled Contourlet transform (NSCT) is the improved Contourlet transform (CT), which can effectively solve the problem of artifact phenomenon in the enhanced catenary image. Besides, choosing the enhancement function and the filter of the NSCT will directly influence the image enhancement effect. In this paper, the proposed method is implemented by combining the NSCT with the nonlinear enhancement function to enhance the catenary image. First, how to choose the filter of the NSCT is discussed. Second, the NSCT is used to decompose the image. Then, the chosen nonlinear enhancement function is used to process the decomposed coefficient of the NSCT. Finally, the NSCT is inversed to obtain the enhanced image. In this paper, we evaluate our algorithm using the lifting wavelet transform, retinex enhancement method, dark channel enhancement method, curvelet transform, and CT method as a comparison to enhance a group of randomly selected low contrast catenary images, respectively. The results of comparative experiments conducted show that the proposed method can effectively enhance the catenary image, the contrast of image is improved, the catenary parts are obvious, and the artifact phenomenon is effectively eliminated, where image details (edges, textures, or smooth areas) are also well preserved. Besides, the values (detail variance-background variance, signal-to-noise ratio, and edge preservation index) of measuring the image enhancement capacity are improved, while the mean squared error value is decreased when compared to the CT method. These indicate that the proposed method is an excellent catenary image enhancement approach.

摘要

图像增强质量在基于图像处理技术的接触网故障诊断系统中起着重要作用。有必要增强接触网的低对比度图像,以便更好地检测接触网部件的状态。非下采样Contourlet变换(NSCT)是对Contourlet变换(CT)的改进,它能有效解决增强后的接触网图像中的伪影现象。此外,选择NSCT的增强函数和滤波器将直接影响图像增强效果。本文通过将NSCT与非线性增强函数相结合来实现所提方法,以增强接触网图像。首先,讨论如何选择NSCT的滤波器。其次,用NSCT对图像进行分解。然后,使用所选的非线性增强函数处理NSCT的分解系数。最后,对NSCT进行逆变换以获得增强后的图像。在本文中,我们分别使用提升小波变换、retinex增强方法、暗通道增强方法、Curvelet变换和CT方法作为对比,来评估我们的算法对一组随机选择的低对比度接触网图像的增强效果。对比实验结果表明,所提方法能有效增强接触网图像,提高图像对比度,使接触网部件清晰可见,并有效消除伪影现象,同时图像细节(边缘、纹理或平滑区域)也得到很好的保留。此外,与CT方法相比,测量图像增强能力的指标值(细节方差 - 背景方差、信噪比和边缘保留指数)得到提高,而均方误差值降低。这些表明所提方法是一种优秀的接触网图像增强方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验