Jager Sven, Schiller Benjamin, Babel Philipp, Blumenroth Malte, Strufe Thorsten, Hamacher Kay
Department of Biology, TU Darmstadt, Schnittspahnstr. 2, 64283 Darmstadt, Germany.
Department of Computer Science, TU Dresden, Nöthnitzer Str. 46, 01187 Dresden, Germany.
Algorithms Mol Biol. 2017 May 30;12:15. doi: 10.1186/s13015-017-0105-0. eCollection 2017.
In this work, we present a new coarse grained representation of RNA dynamics. It is based on adjacency matrices and their interactions patterns obtained from molecular dynamics simulations. RNA molecules are well-suited for this representation due to their composition which is mainly modular and assessable by the secondary structure alone. These interactions can be represented as adjacency matrices of nucleotides. Based on those, we define transitions between states as changes in the adjacency matrices which form Markovian dynamics. The intense computational demand for deriving the transition probability matrices prompted us to develop -[Formula: see text], a stream-based algorithm for generating such Markov models of -vertex adjacency matrices representing the RNA.
We benchmark -[Formula: see text] (a) for random and RNA unit sphere dynamic graphs (b) for the robustness of our method against different parameters. Moreover, we address a riboswitch design problem by applying -[Formula: see text] on six long term molecular dynamics simulation of a synthetic tetracycline dependent riboswitch (500 ns) in combination with five different antibiotics.
The proposed algorithm performs well on large simulated as well as real world dynamic graphs. Additionally, -[Formula: see text] provides insights into nucleotide based RNA dynamics in comparison to conventional metrics like the root-mean square fluctuation. In the light of experimental data our results show important design opportunities for the riboswitch.
在本研究中,我们提出了一种新的RNA动力学粗粒度表示方法。它基于从分子动力学模拟中获得的邻接矩阵及其相互作用模式。RNA分子因其主要由模块组成且仅通过二级结构即可评估的组成特点,非常适合这种表示方法。这些相互作用可以表示为核苷酸的邻接矩阵。基于这些矩阵,我们将状态之间的转变定义为构成马尔可夫动力学的邻接矩阵的变化。由于推导转移概率矩阵所需的计算量巨大,促使我们开发了-[公式:见原文],一种基于流的算法,用于生成这种表示RNA的顶点邻接矩阵的马尔可夫模型。
我们对-[公式:见原文]进行了基准测试,(a)针对随机和RNA单位球动态图,(b)针对我们的方法在不同参数下的稳健性。此外,我们通过将-[公式:见原文]应用于合成的四环素依赖性核糖开关(500纳秒)与五种不同抗生素的六个长期分子动力学模拟,解决了一个核糖开关设计问题。
所提出的算法在大型模拟以及实际动态图上表现良好。此外,与均方根波动等传统指标相比,-[公式:见原文]提供了对基于核苷酸的RNA动力学的见解。根据实验数据,我们的结果显示了核糖开关的重要设计机会。