Suppr超能文献

用于人类运动控制的贝叶斯测地线路径。

Bayesian geodesic path for human motor control.

作者信息

Takiyama Ken

机构信息

Department of Electrical and Electronic Engineering, Tokyo University of Agriculture and Technology, 2-24-16, Nakacho, Koganei, Tokyo 184-8588, Japan.

出版信息

Neural Netw. 2017 Sep;93:137-142. doi: 10.1016/j.neunet.2017.05.005. Epub 2017 May 17.

Abstract

Despite a near-infinite number of possible movement trajectories, our body movements exhibit certain invariant features across individuals; for example, when grasping a cup, individuals choose an approximately linear path from the hand to the cup. Based on these experimental findings, many researchers have proposed optimization frameworks to determine desired movement trajectories. Successful conventional frameworks include the geodesic path, which considers the geometry of our complicated body dynamics, and stochastic frameworks, which consider movement variability. The former succeed in explaining the kinematics in human reaching movements, and the latter succeed in explaining the variability in those movements. However, the conventional geodesic path framework does not consider variability, and the conventional stochastic frameworks do not consider the geometrical properties of our bodies. Thus, how to reconcile these two successful frameworks remains unclear. Here, I show that the conventional geodesic path can be interpreted as a Bayesian framework in which no uncertainty is considered. Hence, by introducing uncertainty into the framework, I propose a Bayesian geodesic path framework that can simultaneously consider the geometric properties of our bodies and movement variability. I demonstrate that the Bayesian geodesic path generates a mean movement trajectory that corresponds to the conventional geodesic path and a variability of movement trajectory, thus explaining the characteristic variability in human reaching movements.

摘要

尽管可能的运动轨迹数量近乎无限,但我们的身体运动在个体间展现出某些不变的特征;例如,在抓取杯子时,个体选择从手到杯子的大致线性路径。基于这些实验结果,许多研究人员提出了优化框架来确定期望的运动轨迹。成功的传统框架包括考虑我们复杂身体动力学几何形状的测地线轨迹,以及考虑运动变异性的随机框架。前者成功地解释了人类伸手动作中的运动学,后者成功地解释了这些动作中的变异性。然而,传统的测地线轨迹框架没有考虑变异性,而传统的随机框架没有考虑我们身体的几何特性。因此,如何协调这两个成功的框架仍不清楚。在这里,我表明传统的测地线轨迹可以被解释为一个不考虑不确定性的贝叶斯框架。因此,通过在框架中引入不确定性,我提出了一个贝叶斯测地线轨迹框架,它可以同时考虑我们身体的几何特性和运动变异性。我证明贝叶斯测地线轨迹生成的平均运动轨迹与传统测地线轨迹相对应,并且有运动轨迹的变异性,从而解释了人类伸手动作中的特征变异性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验