Rapp Insa, Schlosser Christian, Rusiecka Dagmara, Gledhill Martha, Achterberg Eric P
Chemical Oceanography, GEOMAR Helmholtz Centre for Ocean Research, 24148 Kiel, Germany.
Chemical Oceanography, GEOMAR Helmholtz Centre for Ocean Research, 24148 Kiel, Germany.
Anal Chim Acta. 2017 Jul 11;976:1-13. doi: 10.1016/j.aca.2017.05.008. Epub 2017 May 13.
A rapid, automated, high-throughput analytical method capable of simultaneous analysis of multiple elements at trace and ultratrace levels is required to investigate the biogeochemical cycle of trace metals in the ocean. Here we present an analytical approach which uses a commercially available automated preconcentration device (SeaFAST) with accurate volume loading and in-line pH buffering of the sample prior to loading onto a chelating resin (WAKO) and subsequent simultaneous analysis of iron (Fe), zinc (Zn), copper (Cu), nickel (Ni), cadmium (Cd), lead (Pb), cobalt (Co) and manganese (Mn) by high-resolution inductively-coupled plasma mass spectrometry (HR-ICP-MS). Quantification of sample concentration was undertaken using isotope dilution for Fe, Zn, Cu, Ni, Cd and Pb, and standard addition for Co and Mn. The chelating resin is shown to have a high affinity for all analyzed elements, with recoveries between 83 and 100% for all elements, except Mn (60%) and Ni (48%), and showed higher recoveries for Ni, Cd, Pb, Co and Mn in direct comparison to an alternative resin (NOBIAS Chelate-PA1). The reduced recoveries for Ni and Mn using the WAKO resin did not affect the quantification accuracy. A relatively constant retention efficiency on the resin over a broad pH range (pH 5-8) was observed for the trace metals, except for Mn. Mn quantification using standard addition required accurate sample pH adjustment with optimal recoveries at pH 7.5 ± 0.3. UV digestion was necessary to increase recovery of Co and Cu in seawater by 15.6% and 11.4%, respectively, and achieved full break-down of spiked Co-containing vitamin B complexes. Low blank levels and detection limits could be achieved (e.g., 0.029 nmol L for Fe and 0.028 nmol L for Zn) with the use of high purity reagents. Precision and accuracy were assessed using SAFe S, D1, and D2 reference seawaters, and results were in good agreement with available consensus values. The presented method is ideal for high throughput simultaneous analysis of trace elements in coastal and oceanic seawaters. We present a successful application of the analytical method to samples collected in June 2014 in the Northeast Atlantic Ocean.
为了研究海洋中痕量金属的生物地球化学循环,需要一种能够同时分析痕量和超痕量水平多种元素的快速、自动化、高通量分析方法。在此,我们提出一种分析方法,该方法使用市售的自动预浓缩装置(SeaFAST),在将样品加载到螯合树脂(WAKO)上之前,对样品进行精确的体积加载和在线pH缓冲,随后通过高分辨率电感耦合等离子体质谱(HR-ICP-MS)同时分析铁(Fe)、锌(Zn)、铜(Cu)、镍(Ni)、镉(Cd)、铅(Pb)、钴(Co)和锰(Mn)。对铁、锌、铜、镍、镉和铅的样品浓度定量采用同位素稀释法,对钴和锰采用标准加入法。结果表明,螯合树脂对所有分析元素具有高亲和力,除锰(60%)和镍(48%)外,所有元素的回收率在83%至100%之间,与另一种树脂(NOBIAS Chelate-PA1)直接比较,镍、镉、铅、钴和锰的回收率更高。使用WAKO树脂时镍和锰回收率的降低并不影响定量准确性。除锰外,痕量金属在较宽的pH范围(pH 5 - 8)内对树脂的保留效率相对恒定。使用标准加入法对锰进行定量时,需要精确调整样品pH值,在pH 7.5 ± 0.3时回收率最佳。紫外线消解对于分别提高海水中钴和铜的回收率15.6%和11.4%是必要的,并且实现了加标的含钴维生素B络合物的完全分解。使用高纯度试剂可实现低空白水平和检测限(例如,铁为0.029 nmol/L,锌为0.028 nmol/L)。使用SAFe S、D1和D2参考海水评估精密度和准确度,结果与现有共识值良好吻合。所提出的方法是用于沿海和海洋海水中痕量元素高通量同时分析的理想方法。我们展示了该分析方法在2014年6月采集于东北大西洋的样品上的成功应用。