Marine Biogeochemistry Division, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany.
Woods Hole Oceanographic Institution, Woods Hole, MA, USA.
Nature. 2023 Sep;621(7978):330-335. doi: 10.1038/s41586-023-06439-0. Epub 2023 Aug 16.
Projected responses of ocean net primary productivity to climate change are highly uncertain. Models suggest that the climate sensitivity of phytoplankton nutrient limitation in the low-latitude Pacific Ocean plays a crucial role, but this is poorly constrained by observations. Here we show that changes in physical forcing drove coherent fluctuations in the strength of equatorial Pacific iron limitation through multiple El Niño/Southern Oscillation (ENSO) cycles, but that this was overestimated twofold by a state-of-the-art climate model. Our assessment was enabled by first using a combination of field nutrient-addition experiments, proteomics and above-water hyperspectral radiometry to show that phytoplankton physiological responses to iron limitation led to approximately threefold changes in chlorophyll-normalized phytoplankton fluorescence. We then exploited the >18-year satellite fluorescence record to quantify climate-induced nutrient limitation variability. Such synoptic constraints provide a powerful approach for benchmarking the realism of model projections of net primary productivity to climate changes.
对海洋净初级生产力对气候变化响应的预估存在高度不确定性。模型表明,低纬度太平洋浮游植物营养限制的气候敏感性起着关键作用,但这一点受到观测的严重限制。在这里,我们表明,通过多个厄尔尼诺/南方涛动(ENSO)周期,物理强迫的变化驱动了赤道太平洋铁限制强度的一致波动,但这一情况被最先进的气候模型高估了两倍。我们的评估是通过首次使用现场营养添加实验、蛋白质组学和水上高光谱辐射计的组合来实现的,该组合表明,浮游植物对铁限制的生理响应导致叶绿素归一化浮游植物荧光的约三倍变化。然后,我们利用超过 18 年的卫星荧光记录来量化气候引起的营养限制变化。这种天气尺度的限制为基准测试模型对气候变化的净初级生产力预测的现实性提供了一种强大的方法。