Suppr超能文献

A new method for determining the optimal lagged ensemble.

作者信息

Trenary L, DelSole T, Tippett M K, Pegion K

机构信息

George Mason University Fairfax Virginia USA.

Center of Ocean-Land-Atmosphere Studies Fairfax Virginia USA.

出版信息

J Adv Model Earth Syst. 2017 Mar;9(1):291-306. doi: 10.1002/2016MS000838. Epub 2017 Jan 31.

Abstract

We propose a general methodology for determining the lagged ensemble that minimizes the mean square forecast error. The MSE of a lagged ensemble is shown to depend only on a quantity called the cross-lead error covariance matrix, which can be estimated from a short hindcast data set and parameterized in terms of analytic functions of time. The resulting parameterization allows the skill of forecasts to be evaluated for an arbitrary ensemble size and initialization frequency. Remarkably, the parameterization also can estimate the MSE of a burst ensemble simply by taking the limit of an infinitely small interval between initialization times. This methodology is applied to forecasts of the Madden Julian Oscillation (MJO) from version 2 of the Climate Forecast System version 2 (CFSv2). For leads greater than a week, little improvement is found in the MJO forecast skill when ensembles larger than 5 days are used or initializations greater than 4 times per day. We find that if the initialization frequency is too infrequent, important structures of the lagged error covariance matrix are lost. Lastly, we demonstrate that the forecast error at leads ≥10 days can be reduced by optimally weighting the lagged ensemble members. The weights are shown to depend only on the cross-lead error covariance matrix. While the methodology developed here is applied to CFSv2, the technique can be easily adapted to other forecast systems.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a152/5434667/2a80b29a59ad/JAME-9-291-g001.jpg

相似文献

1
A new method for determining the optimal lagged ensemble.
J Adv Model Earth Syst. 2017 Mar;9(1):291-306. doi: 10.1002/2016MS000838. Epub 2017 Jan 31.
2
Monthly ENSO Forecast Skill and Lagged Ensemble Size.
J Adv Model Earth Syst. 2018 Apr;10(4):1074-1086. doi: 10.1002/2017MS001204. Epub 2018 Apr 20.
3
Evaluation of MJO Predictive Skill in Multiphysics and Multimodel Global Ensembles.
Mon Weather Rev. 2017 Jul;145(7):2555-2574. doi: 10.1175/MWR-D-16-0419.1. Epub 2017 Jun 15.
4
The Weighted-Average Lagged Ensemble.
J Adv Model Earth Syst. 2017 Nov;9(7):2739-2752. doi: 10.1002/2017MS001128. Epub 2017 Nov 29.
5
PM extended-range forecast based on MJO and S2S using LightGBM.
Sci Total Environ. 2023 Jul 1;880:163358. doi: 10.1016/j.scitotenv.2023.163358. Epub 2023 Apr 6.
6
A machine learning model that outperforms conventional global subseasonal forecast models.
Nat Commun. 2024 Jul 30;15(1):6425. doi: 10.1038/s41467-024-50714-1.
9
Deep learning for bias correction of MJO prediction.
Nat Commun. 2021 May 25;12(1):3087. doi: 10.1038/s41467-021-23406-3.
10
MJO-Related Tropical Convection Anomalies Lead to More Accurate Stratospheric Vortex Variability in Subseasonal Forecast Models.
Geophys Res Lett. 2017 Oct 16;44(19):10054-10062. doi: 10.1002/2017GL074470. Epub 2017 Oct 13.

引用本文的文献

1
Monthly ENSO Forecast Skill and Lagged Ensemble Size.
J Adv Model Earth Syst. 2018 Apr;10(4):1074-1086. doi: 10.1002/2017MS001204. Epub 2018 Apr 20.
2
The Weighted-Average Lagged Ensemble.
J Adv Model Earth Syst. 2017 Nov;9(7):2739-2752. doi: 10.1002/2017MS001128. Epub 2017 Nov 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验