Suppr超能文献

BAMCAFE:一种用于具有部分观测值的复杂湍流系统的贝叶斯机器学习高级预测集成方法。

BAMCAFE: A Bayesian machine learning advanced forecast ensemble method for complex turbulent systems with partial observations.

作者信息

Chen Nan, Li Yingda

机构信息

Department of Mathematics, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA.

出版信息

Chaos. 2021 Nov;31(11):113114. doi: 10.1063/5.0062028.

Abstract

Ensemble forecast based on physics-informed models is one of the most widely used forecast algorithms for complex turbulent systems. A major difficulty in such a method is the model error that is ubiquitous in practice. Data-driven machine learning (ML) forecasts can reduce the model error, but they often suffer from partial and noisy observations. In this article, a simple but effective Bayesian machine learning advanced forecast ensemble (BAMCAFE) method is developed, which combines an available imperfect physics-informed model with data assimilation (DA) to facilitate the ML ensemble forecast. In the BAMCAFE framework, a Bayesian ensemble DA is applied to create the training data of the ML model, which reduces the intrinsic error in the imperfect physics-informed model simulations and provides the training data of the unobserved variables. Then a generalized DA is employed for the initialization of the ML ensemble forecast. In addition to forecasting the optimal point-wise value, the BAMCAFE also provides an effective approach of quantifying the forecast uncertainty utilizing a non-Gaussian probability density function that characterizes the intermittency and extreme events. It is shown using a two-layer Lorenz 96 model that the BAMCAFE method can significantly improve the forecasting skill compared to the typical reduced-order imperfect models with bare truncation or stochastic parameterization for both the observed and unobserved large-scale variables. It is also shown via a nonlinear conceptual model that the BAMCAFE leads to a comparable non-Gaussian forecast uncertainty as the perfect model while the associated imperfect physics-informed model suffers from large forecast biases.

摘要

基于物理信息模型的集合预报是复杂湍流系统中应用最广泛的预报算法之一。这种方法的一个主要困难是实际中普遍存在的模型误差。数据驱动的机器学习(ML)预报可以减少模型误差,但它们常常受到部分观测数据和噪声观测数据的影响。在本文中,我们开发了一种简单而有效的贝叶斯机器学习高级预报集合(BAMCAFE)方法,该方法将一个可用的不完美物理信息模型与数据同化(DA)相结合,以促进ML集合预报。在BAMCAFE框架中,应用贝叶斯集合DA来创建ML模型的训练数据,这减少了不完美物理信息模型模拟中的固有误差,并提供了未观测变量的训练数据。然后采用广义DA对ML集合预报进行初始化。除了预报最优的逐点值外,BAMCAFE还提供了一种有效的方法,利用表征间歇性和极端事件的非高斯概率密度函数来量化预报不确定性。使用两层Lorenz 96模型表明,与具有裸截断或随机参数化的典型降阶不完美模型相比,BAMCAFE方法对于观测和未观测的大尺度变量都能显著提高预报技能。通过一个非线性概念模型还表明,BAMCAFE导致的非高斯预报不确定性与完美模型相当,而相关的不完美物理信息模型存在较大的预报偏差。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验