Long Qianfa, Luo Qiang, Wang Kai, Bates Adrian, Shetty Ashok K
1Department of Neurosurgery, Xi'an Central Hospital, Xi'an Jiao Tong University School of Medicine, Xi'an 710003, China.
2Institute for Regenerative Medicine, Texas A&M Health Science Center College of Medicine at Scott & White, Temple and College Station, Texas, 76502, USA.
Aging Dis. 2017 May 2;8(3):301-313. doi: 10.14336/AD.2016.1018. eCollection 2017 May.
GABAergic neuronal cell grafting has promise for treating a multitude of neurological disorders including epilepsy, age-related memory dysfunction, Alzheimer's disease and schizophrenia. However, identification of an unlimited source of GABAergic cells is critical for advancing such therapies. Our previous study implied that reprogramming of bone marrow-derived mesenchymal stem cells (BMSCs) through overexpression of the Achaete-scute homolog 1 (Ascl1, also called Mash1) could generate GABAergic neuron-like cells. Here, we investigated mechanisms underlying the conversion of BMSCs into GABAergic cells. We inhibited γ-secretase (an enzyme that activates Notch signaling) with N-[N-(3,5-difluorophenacetyl)-L-alanyl]-S-phenylglycine t-butyl ester (DAPT) or manipulated the expression of Notch signaling components such as the (RBPJ), (Hes1) or Mash1. We demonstrate that inhibition of γ-secretase through DAPT down-regulates RBPJ and Hes1, up-regulates Mash1 and results in an enhanced differentiation of BMSCs into GABAergic cells. On the other hand, RBPJ knockdown in BMSCs has no effect on Mash1 gene expression whereas Hes1 knockdown increases the expression of Mash1. Transduction of Mash1 in BMSCs also increases the expression of Hes1 but not RBPJ. Moreover, increased GABAergic differentiation in BMSCs occurs with concurrent Mash1 overexpression and Hes1-silencing. Thus, the Mash1-dependent Notch signaling pathway regulates GABAergic neuron-like differentiation of BMSCs. These results also suggest that genetic engineering of BMSCs is a useful avenue for obtaining GABAergic neuron-like donor cells for the treatment of neurological disorders.
γ-氨基丁酸能神经元细胞移植有望治疗多种神经系统疾病,包括癫痫、年龄相关性记忆功能障碍、阿尔茨海默病和精神分裂症。然而,确定γ-氨基丁酸能细胞的无限来源对于推进此类治疗至关重要。我们之前的研究表明,通过过表达achaete-scute同源物1(Ascl1,也称为Mash1)对骨髓间充质干细胞(BMSC)进行重编程可产生γ-氨基丁酸能神经元样细胞。在此,我们研究了BMSC转化为γ-氨基丁酸能细胞的潜在机制。我们用N-[N-(3,5-二氟苯乙酰基)-L-丙氨酰基]-S-苯基甘氨酸叔丁酯(DAPT)抑制γ-分泌酶(一种激活Notch信号的酶),或操纵Notch信号成分如重组信号结合蛋白Jκ(RBPJ)、毛状分裂增强子1(Hes1)或Mash1的表达。我们证明,通过DAPT抑制γ-分泌酶可下调RBPJ和Hes1,上调Mash1,并导致BMSC向γ-氨基丁酸能细胞的分化增强。另一方面,BMSC中RBPJ的敲低对Mash1基因表达没有影响,而Hes1的敲低则增加了Mash1的表达。BMSC中Mash1的转导也增加了Hes1的表达,但不影响RBPJ的表达。此外,BMSC中γ-氨基丁酸能分化的增加伴随着Mash1的过表达和Hes1的沉默。因此,依赖Mash1的Notch信号通路调节BMSC向γ-氨基丁酸能神经元样细胞的分化。这些结果还表明,对BMSC进行基因工程改造是获得用于治疗神经系统疾病的γ-氨基丁酸能神经元样供体细胞的有效途径。