Craven Galen T, Nitzan Abraham
Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.
School of Chemistry, Tel Aviv University, Tel Aviv 69978, Israel.
Phys Rev Lett. 2017 May 19;118(20):207201. doi: 10.1103/PhysRevLett.118.207201. Epub 2017 May 15.
A theory is developed to describe the coupled transport of energy and charge in networks of electron donor-acceptor sites which are seated in a thermally heterogeneous environment, where the transfer kinetics are dominated by Marcus-type hopping rates. It is found that the coupling of heat and charge transfer in such systems gives rise to exotic transport phenomena which are absent in thermally homogeneous systems and cannot be described by standard thermoelectric relations. Specifically, the directionality and extent of thermal transistor amplification and cyclical electronic currents in a given network can be controlled by tuning the underlying temperature gradient in the system. The application of these findings toward the optimal control of multithermal currents is illustrated on a paradigmatic nanostructure.
本文提出了一种理论,用于描述处于热非均匀环境中的电子供体 - 受体位点网络中的能量和电荷耦合传输,其中转移动力学由马库斯型跳跃速率主导。研究发现,此类系统中热传递与电荷传递的耦合会引发一些奇异的传输现象,这些现象在热均匀系统中不存在,且无法用标准热电关系来描述。具体而言,通过调节系统中的基础温度梯度,可以控制给定网络中热晶体管放大和周期性电子电流的方向性和程度。在一个典型的纳米结构上展示了这些发现对多热电流最优控制的应用。