Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.
J Chem Phys. 2017 Sep 28;147(12):124101. doi: 10.1063/1.4990410.
A unified theory of heat transport in environments that sustain intersite phononic coupling and electron hopping is developed. The heat currents generated by both phononic transport and electron transfer between sites characterized by different local temperatures are calculated and compared. Using typical molecular parameters we find that the electron-transfer-induced heat current can be comparable to that of the standard phononic transport for donor-acceptor pairs with efficient bidirectional electron transfer rates (relatively small intersite distance and favorable free-energy difference). In most other situations, phononic transport is the dominant heat transfer mechanism.
我们提出了一种统一的理论,用于研究在维持局域声子耦合和电子跳跃的环境中的热输运。计算并比较了由局域温度不同的两个位置之间的声子输运和电子转移产生的热流。使用典型的分子参数,我们发现对于具有高效双向电子转移速率(相对较小的局域距离和有利的自由能差)的供体-受体对,电子转移引起的热流可以与标准声子输运相当。在大多数其他情况下,声子输运是主要的热输运机制。