Suppr超能文献

主动脉血压的贮器压力分析:一项在人体五个部位的体内研究。

Reservoir pressure analysis of aortic blood pressure: an in-vivo study at five locations in humans.

作者信息

Narayan Om, Parker Kim H, Davies Justin E, Hughes Alun D, Meredith Ian T, Cameron James D

机构信息

aMonash Cardiovascular Research Centre, Monash University, Melbourne, Australia bDepartment of Bioengineering cInternational Centre for Circulatory Health, Imperial College dUCL Institute of Cardiovascular Science, University College, London, UK eMonashHeart, Monash Health, Victoria, Australia.

出版信息

J Hypertens. 2017 Oct;35(10):2025-2033. doi: 10.1097/HJH.0000000000001424.

Abstract

INTRODUCTION

The development and propagation of the aortic blood pressure wave remains poorly understood, despite its clear relevance to major organ blood flow and potential association with cardiovascular outcomes. The reservoir pressure model provides a unified description of the dual conduit and reservoir functions of the aorta. Reservoir waveform analysis resolves the aortic pressure waveform into an excess (wave related) and reservoir (compliance related) pressure. The applicability of this model to the pressure waveform as it propagates along the aorta has not been investigated in humans.

METHODS

We analysed invasively acquired high-fidelity aortic pressure waveforms from 40 patients undergoing clinically indicated coronary catheterization. Aortic waveforms were measured using a solid-state pressure catheter at five anatomical sites: the ascending aorta, the transverse aortic arch, the diaphragm, the level of the renal arteries, and at the aortic bifurcation. Ensemble average pressure waveforms were obtained for these sites for each patient and analysed to obtain the reservoir pressure [Pr(t)] and the excess pressure [Px(t)] at each aortic position.

RESULTS

Systolic blood pressure increased at a rate of 2.1 mmHg per site along the aorta, whereas diastolic blood pressure was effectively constant. Maximum Pr decreased only slightly along the aorta (changing by -0.7 mmHg per site), whereas the maximum of Px increased from the proximal to distal aorta (+4.1 mmHg per site; P < 0.001). The time, relative to the start of systolic upstroke, of the occurrence of the maximum excess pressure did not vary along the aorta. Of the parameters used to derive the reservoir pressure waveform the systolic and diastolic rate constants showed divergent changes with the systolic rate constant (ks) decreasing and the diastolic rate constant (kd) increasing along the aorta.

CONCLUSIONS

This analysis confirms the proposition that the magnitude of the calculated reservoir pressure waveform, despite known changes in aortic structure, is effectively constant throughout the aorta. A progressive increase of excess pressure accounts for the increase in pulse pressure from the proximal to distal aorta. The reservoir pressure rate constants seem to behave as arterial functional parameters. The accompanying decrease in ks and increase in kd are consistent with a progressive decrease in aortic compliance and increase in impedance. The reservoir pressure waveform therefore provides a model that might have utility in understanding the generation of central blood pressure and in specific cases might have clinical utility.

摘要

引言

尽管主动脉血压波的发展和传播与主要器官的血流明显相关,且可能与心血管疾病的发生有关,但其机制仍未完全明确。血管弹性贮器压力模型对主动脉的双重管道和贮器功能进行了统一描述。贮器波形分析将主动脉压力波形分解为过剩(与波动相关)压力和贮器(与顺应性相关)压力。该模型在人体主动脉压力波形传播过程中的适用性尚未得到研究。

方法

我们对40例因临床需要接受冠状动脉导管插入术患者的主动脉压力波形进行了有创分析。使用固态压力导管在五个解剖部位测量主动脉波形:升主动脉、主动脉弓横部、膈肌、肾动脉水平以及主动脉分叉处。对每位患者这些部位的总体平均压力波形进行分析,以获得每个主动脉位置的贮器压力[Pr(t)]和过剩压力[Px(t)]。

结果

沿主动脉每个部位的收缩压以2.1 mmHg的速率升高,而舒张压基本保持恒定。最大贮器压力沿主动脉仅略有下降(每个部位下降0.7 mmHg),而过剩压力的最大值从主动脉近端向远端升高(每个部位升高4.1 mmHg;P<0.001)。相对于收缩期上升起始点,最大过剩压力出现的时间沿主动脉没有变化。在用于推导贮器压力波形的参数中,收缩期和舒张期速率常数呈现出不同的变化,收缩期速率常数(ks)沿主动脉下降,舒张期速率常数(kd)沿主动脉升高。

结论

该分析证实了以下观点,即尽管已知主动脉结构存在变化,但计算得出的贮器压力波形大小在整个主动脉中实际上是恒定的。过剩压力的逐渐增加导致了从主动脉近端到远端脉压的增加。贮器压力速率常数似乎表现为动脉功能参数。伴随的ks下降和kd升高与主动脉顺应性逐渐降低和阻抗增加相一致。因此,贮器压力波形提供了一个可能有助于理解中心血压产生的模型,在特定情况下可能具有临床应用价值。

相似文献

8
Waveform dispersion, not reflection, may be the major determinant of aortic pressure wave morphology.
Am J Physiol Heart Circ Physiol. 2005 Dec;289(6):H2497-502. doi: 10.1152/ajpheart.00411.2005. Epub 2005 Jul 15.

引用本文的文献

4
Physiological and clinical insights from reservoir-excess pressure analysis.储液器超压分析的生理与临床见解
J Hum Hypertens. 2021 Sep;35(9):758-768. doi: 10.1038/s41371-021-00515-6. Epub 2021 Mar 9.

本文引用的文献

2
The case for the reservoir-wave approach.水库波方法的依据。
Int J Cardiol. 2014 Mar 15;172(2):299-306. doi: 10.1016/j.ijcard.2013.12.178. Epub 2014 Jan 8.
5
The reservoir-wave paradigm.储层波范式。
J Hypertens. 2012 Sep;30(9):1880-1; author reply 1881-3. doi: 10.1097/HJH.0b013e3283560960.
7
Arterial reservoir-excess pressure and ventricular work.动脉储器过度压力与心室作功。
Med Biol Eng Comput. 2012 Apr;50(4):419-24. doi: 10.1007/s11517-012-0872-1. Epub 2012 Feb 26.
9
A meta-analysis of the mechanism of blood pressure change with aging.衰老导致血压变化机制的荟萃分析。
J Am Coll Cardiol. 2009 Nov 24;54(22):2087-92. doi: 10.1016/j.jacc.2009.06.049.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验