Hugo Sarah E, Schlegel Amnon
University of Utah Molecular Medicine Program, University of Utah School of Medicine, Salt Lake City, Utah 84112.
Department of Internal Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Utah School of Medicine, Salt Lake City, Utah 84112.
Endocrinology. 2017 Aug 1;158(8):2420-2426. doi: 10.1210/en.2017-00359.
Recently, we identified harvest moon (hmn), a fully penetrant and expressive recessive zebrafish mutant with hepatic steatosis. Larvae showed increased triacylglycerol in the absence of other obvious defects. When we attempted to raise these otherwise normal-appearing mutants to adulthood, we observed a developmental arrest and death in the early juvenile period. In this study, we report the positional cloning of the hmn locus and characterization of the defects caused by the mutation. Using bulk segregant analysis and fine mapping, we find that hmn mutants harbor a point mutation in an invariant residue within the sugar isomerase 1 domain of the gene encoding the rate-limiting enzyme of the hexosamine biosynthetic pathway (HBP) glutamine-fructose-6-phosphate transamidase (Gfpt1). The mutated protein shows increased abundance. The HBP generates β-N-acetyl-glucosamine (GlcNAc) as a spillover pathway from glucose. GlcNAc can be O-linked to seryl and threonyl residues of diverse cellular proteins (O-GlcNAc modification). Although some of these O-GlcNAc modifications serve an essential structural role, many others are dynamically generated on signaling molecules, including several impacting insulin signaling. We find that gfpt1 mutants show global increase in O-GlcNAc modification, and, surprisingly, lower fasting blood glucose in males. Taken together with our previously reported work, the gfpt1 mutant we isolated demonstrates that global increase in O-GlcNAc modification causes some severe insulin resistance phenotypes (hepatic steatosis and runting) but does not cause hyperglycemia. This animal model will provide a platform for dissecting how O-GlcNAc modification alters insulin responsiveness in multiple tissues.
最近,我们鉴定出了“收获月”(hmn),这是一种具有肝脂肪变性的完全显性且表现性隐性斑马鱼突变体。幼虫在没有其他明显缺陷的情况下,三酰甘油含量增加。当我们试图将这些外观正常的突变体饲养至成年时,我们观察到它们在幼年期早期出现发育停滞并死亡。在本研究中,我们报告了hmn基因座的定位克隆以及该突变所导致缺陷的特征。通过混合分离分析和精细定位,我们发现hmn突变体在编码己糖胺生物合成途径(HBP)限速酶谷氨酰胺 - 果糖 - 6 - 磷酸转酰胺酶(Gfpt1)的基因的糖异构酶1结构域内的一个不变残基处存在点突变。突变后的蛋白质丰度增加。HBP从葡萄糖产生β - N - 乙酰葡糖胺(GlcNAc)作为溢出途径。GlcNAc可以O连接到多种细胞蛋白的丝氨酸和苏氨酸残基上(O - GlcNAc修饰)。虽然其中一些O - GlcNAc修饰发挥着重要的结构作用,但许多其他修饰是在信号分子上动态产生的,包括一些影响胰岛素信号传导的修饰。我们发现gfpt1突变体显示O - GlcNAc修饰整体增加,并且令人惊讶的是,雄性的空腹血糖较低。结合我们之前报道的工作,我们分离出的gfpt1突变体表明O - GlcNAc修饰的整体增加会导致一些严重的胰岛素抵抗表型(肝脂肪变性和发育迟缓),但不会导致高血糖。这个动物模型将为剖析O - GlcNAc修饰如何改变多个组织中的胰岛素反应性提供一个平台。