Suppr超能文献

使用联合建模方法对亨廷顿舞蹈症运动诊断进行动态预测

Dynamic Prediction of Motor Diagnosis in Huntington's Disease Using a Joint Modeling Approach.

作者信息

Li Kan, Furr-Stimming Erin, Paulsen Jane S, Luo Sheng

机构信息

Department of Biostatistics, The University of Texas Health Science Center at Houston, Houston, TX, USA.

Department of Neurology, The University of Texas Health Science Center at Houston, Houston, TX, USA.

出版信息

J Huntingtons Dis. 2017;6(2):127-137. doi: 10.3233/JHD-170236.

Abstract

BACKGROUND

Prediction of motor diagnosis in Huntington's disease (HD) can be improved by incorporating other phenotypic and biological clinical measures in addition to cytosine-adenine-guanine (CAG) repeat length and age.

OBJECTIVE

The objective was to compare various clinical and biomarker trajectories for tracking HD progression and predicting motor conversion.

METHODS

Participants were from the PREDICT-HD study. We constructed a mixed-effect model to describe the change of measures while jointly modeling the process with time to HD diagnosis. The model was then used for subject-specific prediction. We employed the time-dependent receiver operating characteristic (ROC) method to assess the discriminating capability of the measures to identify high and low risk patients. The strongest predictor was used to illustrate the dynamic prediction of the disease risk and future trajectories of biomarkers for three hypothetical patients.

RESULTS

1078 individuals were included in this analysis. Five longitudinal clinical and imaging measures were compared. The putamen volume had the best discrimination performance with area under the curve (AUC) ranging from 0.74 to 0.82 over time. The total motor score showed a comparable discriminative ability with AUC ranging from 0.69 to 0.78 over time. The model showed that decreasing putamen volume was a significant predictor of motor conversion. A web-based calculator was developed for implementing the methods.

CONCLUSIONS

By jointly modeling longitudinal data with time-to-event outcomes, it is possible to construct an individualized dynamic event prediction model that renews over time with accumulating evidence. If validated, this could be a valuable tool to guide the clinician in predicting age of onset and potentially rate of progression.

摘要

背景

除了胞嘧啶-腺嘌呤-鸟嘌呤(CAG)重复长度和年龄外,纳入其他表型和生物临床指标可改善亨廷顿舞蹈病(HD)运动诊断的预测。

目的

比较各种临床和生物标志物轨迹,以追踪HD进展并预测运动转化。

方法

参与者来自PREDICT-HD研究。我们构建了一个混合效应模型来描述指标的变化,同时对HD诊断时间过程进行联合建模。然后将该模型用于个体预测。我们采用时间依赖性受试者工作特征(ROC)方法来评估这些指标区分高风险和低风险患者的能力。使用最强的预测指标来说明三种假设患者的疾病风险动态预测和生物标志物的未来轨迹。

结果

本分析纳入了1078名个体。比较了五项纵向临床和影像学指标。壳核体积具有最佳的区分性能,曲线下面积(AUC)随时间范围为0.74至0.82。总运动评分显示出相当的区分能力,AUC随时间范围为0.69至0.78。模型显示壳核体积减小是运动转化的显著预测指标。开发了一个基于网络的计算器来实施这些方法。

结论

通过将纵向数据与事件发生时间结果进行联合建模,可以构建一个随时间根据累积证据更新的个体化动态事件预测模型。如果得到验证,这可能是指导临床医生预测发病年龄和潜在进展速度的有价值工具。

相似文献

2
Prediction of manifest Huntington's disease with clinical and imaging measures: a prospective observational study.
Lancet Neurol. 2014 Dec;13(12):1193-201. doi: 10.1016/S1474-4422(14)70238-8. Epub 2014 Nov 3.
4
Multivariate prediction of motor diagnosis in Huntington's disease: 12 years of PREDICT-HD.
Mov Disord. 2015 Oct;30(12):1664-72. doi: 10.1002/mds.26364. Epub 2015 Sep 4.
7
Predicting the Risk of Huntington's Disease with Multiple Longitudinal Biomarkers.
J Huntingtons Dis. 2019;8(3):323-332. doi: 10.3233/JHD-190345.
8
Motor onset and diagnosis in Huntington disease using the diagnostic confidence level.
J Neurol. 2015 Dec;262(12):2691-8. doi: 10.1007/s00415-015-7900-7. Epub 2015 Sep 26.
9
Huntington's Disease Progression: A Population Modeling Approach to Characterization Using Clinical Rating Scales.
J Clin Pharmacol. 2020 Aug;60(8):1051-1060. doi: 10.1002/jcph.1598. Epub 2020 May 16.

引用本文的文献

1
Dynamic recurrence risk and adjuvant chemotherapy benefit prediction by ctDNA in resected NSCLC.
Nat Commun. 2021 Nov 19;12(1):6770. doi: 10.1038/s41467-021-27022-z.
2
Harnessing repeated measurements of predictor variables for clinical risk prediction: a review of existing methods.
Diagn Progn Res. 2020 Jul 9;4:9. doi: 10.1186/s41512-020-00078-z. eCollection 2020.
3
Framework for improving outcome prediction for acute to chronic low back pain transitions.
Pain Rep. 2020 Mar 4;5(2):e809. doi: 10.1097/PR9.0000000000000809. eCollection 2020 Mar-Apr.
4
Predicting the Risk of Huntington's Disease with Multiple Longitudinal Biomarkers.
J Huntingtons Dis. 2019;8(3):323-332. doi: 10.3233/JHD-190345.
6
Translation of MicroRNA-Based Huntingtin-Lowering Therapies from Preclinical Studies to the Clinic.
Mol Ther. 2018 Apr 4;26(4):947-962. doi: 10.1016/j.ymthe.2018.02.002. Epub 2018 Feb 8.

本文引用的文献

1
DYNAMIC PREDICTION FOR MULTIPLE REPEATED MEASURES AND EVENT TIME DATA: AN APPLICATION TO PARKINSON'S DISEASE.
Ann Appl Stat. 2017 Sep;11(3):1787-1809. doi: 10.1214/17-AOAS1059. Epub 2017 Oct 5.
2
Validation of a prognostic index for Huntington's disease.
Mov Disord. 2017 Feb;32(2):256-263. doi: 10.1002/mds.26838. Epub 2016 Nov 28.
3
Multivariate prediction of motor diagnosis in Huntington's disease: 12 years of PREDICT-HD.
Mov Disord. 2015 Oct;30(12):1664-72. doi: 10.1002/mds.26364. Epub 2015 Sep 4.
4
Prediction of manifest Huntington's disease with clinical and imaging measures: a prospective observational study.
Lancet Neurol. 2014 Dec;13(12):1193-201. doi: 10.1016/S1474-4422(14)70238-8. Epub 2014 Nov 3.
5
Tracking motor impairments in the progression of Huntington's disease.
Mov Disord. 2014 Mar;29(3):311-9. doi: 10.1002/mds.25657. Epub 2013 Oct 21.
6
Joint modeling of multivariate longitudinal measurements and survival data with applications to Parkinson's disease.
Stat Methods Med Res. 2016 Aug;25(4):1346-58. doi: 10.1177/0962280213480877. Epub 2013 Apr 16.
7
Indexing disease progression at study entry with individuals at-risk for Huntington disease.
Am J Med Genet B Neuropsychiatr Genet. 2011 Dec;156B(7):751-63. doi: 10.1002/ajmg.b.31232. Epub 2011 Aug 19.
8
Dynamic predictions and prospective accuracy in joint models for longitudinal and time-to-event data.
Biometrics. 2011 Sep;67(3):819-29. doi: 10.1111/j.1541-0420.2010.01546.x. Epub 2011 Feb 9.
9
Basic concepts and methods for joint models of longitudinal and survival data.
J Clin Oncol. 2010 Jun 1;28(16):2796-801. doi: 10.1200/JCO.2009.25.0654. Epub 2010 May 3.
10
CAG-repeat length and the age of onset in Huntington disease (HD): a review and validation study of statistical approaches.
Am J Med Genet B Neuropsychiatr Genet. 2010 Mar 5;153B(2):397-408. doi: 10.1002/ajmg.b.30992.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验