Suppr超能文献

利用多个纵向生物标志物预测亨廷顿舞蹈病风险

Predicting the Risk of Huntington's Disease with Multiple Longitudinal Biomarkers.

作者信息

Li Fan, Li Kan, Li Cai, Luo Sheng

机构信息

Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC, USA.

Duke Clinical Research Institute, Durham, NC, USA.

出版信息

J Huntingtons Dis. 2019;8(3):323-332. doi: 10.3233/JHD-190345.

Abstract

BACKGROUND

Huntington's disease (HD) has gradually become a public health threat, and there is a growing interest in developing prognostic models to predict the time for HD diagnosis.

OBJECTIVE

This study aims to develop a novel prognostic model that leverages multiple longitudinal biomarkers to inform the risk of HD.

METHODS

The multivariate functional principal component analysis was used to summarize the essential information from multiple longitudinal markers and to obtain a set of prognostic scores. The prognostic scores were used as predictors in a Cox model to predict the right-censored time to diagnosis. We used cross-validation to determine the best model in PREDICT-HD (n = 1,039) and ENROLL-HD (n = 1,776); external validation was carried out in ENROLL-HD.

RESULTS

We considered six commonly measured longitudinal biomarkers in PREDICT-HD and ENROLL-HD (Total Motor Score, Symbol Digit Modalities Test, Stroop Word Test, Stroop Color Test, Stroop Interference Test, and Total Functional Capacity). The prognostic model utilizing these longitudinal biomarkers significantly improved the predictive performance over the model with baseline biomarker information. A new prognostic index was computed using the proposed model, and can be dynamically updated over time as new biomarker measurements become available.

CONCLUSION

Longitudinal measurements of commonly measured clinical biomarkers substantially improve the risk prediction of Huntington's disease diagnosis. Calculation of the prognostic index informs the patient's risk category and facilitates patient selection in future clinical trials.

摘要

背景

亨廷顿舞蹈症(HD)已逐渐成为一种公共卫生威胁,人们对开发用于预测HD诊断时间的预后模型的兴趣与日俱增。

目的

本研究旨在开发一种新型预后模型,该模型利用多种纵向生物标志物来评估HD风险。

方法

采用多变量功能主成分分析来总结多个纵向标志物的基本信息,并获得一组预后评分。将这些预后评分用作Cox模型中的预测因子,以预测右删失诊断时间。我们使用交叉验证来确定PREDICT-HD(n = 1,039)和ENROLL-HD(n = 1,776)中的最佳模型;在ENROLL-HD中进行外部验证。

结果

我们在PREDICT-HD和ENROLL-HD中考虑了六种常用的纵向生物标志物(总运动评分、符号数字模态测试、斯特鲁普单词测试、斯特鲁普颜色测试、斯特鲁普干扰测试和总功能能力)。与具有基线生物标志物信息的模型相比,利用这些纵向生物标志物的预后模型显著提高了预测性能。使用所提出的模型计算了一个新的预后指数,并且随着新的生物标志物测量数据的获得,该指数可以随时间动态更新。

结论

常用临床生物标志物的纵向测量显著改善了亨廷顿舞蹈症诊断的风险预测。预后指数的计算可告知患者的风险类别,并有助于在未来的临床试验中进行患者选择。

相似文献

1
Predicting the Risk of Huntington's Disease with Multiple Longitudinal Biomarkers.
J Huntingtons Dis. 2019;8(3):323-332. doi: 10.3233/JHD-190345.
2
Prediction of manifest Huntington's disease with clinical and imaging measures: a prospective observational study.
Lancet Neurol. 2014 Dec;13(12):1193-201. doi: 10.1016/S1474-4422(14)70238-8. Epub 2014 Nov 3.
3
Validation of a prognostic index for Huntington's disease.
Mov Disord. 2017 Feb;32(2):256-263. doi: 10.1002/mds.26838. Epub 2016 Nov 28.
4
Multivariate prediction of motor diagnosis in Huntington's disease: 12 years of PREDICT-HD.
Mov Disord. 2015 Oct;30(12):1664-72. doi: 10.1002/mds.26364. Epub 2015 Sep 4.
5
Cognitive and Motor Norms for Huntington's Disease.
Arch Clin Neuropsychol. 2020 Aug 28;35(6):671-682. doi: 10.1093/arclin/acaa026.
6
8
Cerebrospinal fluid endo-lysosomal proteins as potential biomarkers for Huntington's disease.
PLoS One. 2020 Aug 17;15(8):e0233820. doi: 10.1371/journal.pone.0233820. eCollection 2020.

本文引用的文献

2
Disease Progression in Huntington Disease: An Analysis of Multiple Longitudinal Outcomes.
J Huntingtons Dis. 2018;7(4):337-344. doi: 10.3233/JHD-180297.
3
Fast covariance estimation for sparse functional data.
Stat Comput. 2018;28(3):511-522. doi: 10.1007/s11222-017-9744-8. Epub 2017 Apr 11.
4
A prognostic model of Alzheimer's disease relying on multiple longitudinal measures and time-to-event data.
Alzheimers Dement. 2018 May;14(5):644-651. doi: 10.1016/j.jalz.2017.11.004. Epub 2018 Jan 4.
5
Survival End Points for Huntington Disease Trials Prior to a Motor Diagnosis.
JAMA Neurol. 2017 Nov 1;74(11):1352-1360. doi: 10.1001/jamaneurol.2017.2107.
7
Validation of a prognostic index for Huntington's disease.
Mov Disord. 2017 Feb;32(2):256-263. doi: 10.1002/mds.26838. Epub 2016 Nov 28.
8
Multivariate prediction of motor diagnosis in Huntington's disease: 12 years of PREDICT-HD.
Mov Disord. 2015 Oct;30(12):1664-72. doi: 10.1002/mds.26364. Epub 2015 Sep 4.
9
Prediction of manifest Huntington's disease with clinical and imaging measures: a prospective observational study.
Lancet Neurol. 2014 Dec;13(12):1193-201. doi: 10.1016/S1474-4422(14)70238-8. Epub 2014 Nov 3.
10
Evaluating Random Forests for Survival Analysis using Prediction Error Curves.
J Stat Softw. 2012 Sep;50(11):1-23. doi: 10.18637/jss.v050.i11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验