Li Fan, Li Kan, Li Cai, Luo Sheng
Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC, USA.
Duke Clinical Research Institute, Durham, NC, USA.
J Huntingtons Dis. 2019;8(3):323-332. doi: 10.3233/JHD-190345.
Huntington's disease (HD) has gradually become a public health threat, and there is a growing interest in developing prognostic models to predict the time for HD diagnosis.
This study aims to develop a novel prognostic model that leverages multiple longitudinal biomarkers to inform the risk of HD.
The multivariate functional principal component analysis was used to summarize the essential information from multiple longitudinal markers and to obtain a set of prognostic scores. The prognostic scores were used as predictors in a Cox model to predict the right-censored time to diagnosis. We used cross-validation to determine the best model in PREDICT-HD (n = 1,039) and ENROLL-HD (n = 1,776); external validation was carried out in ENROLL-HD.
We considered six commonly measured longitudinal biomarkers in PREDICT-HD and ENROLL-HD (Total Motor Score, Symbol Digit Modalities Test, Stroop Word Test, Stroop Color Test, Stroop Interference Test, and Total Functional Capacity). The prognostic model utilizing these longitudinal biomarkers significantly improved the predictive performance over the model with baseline biomarker information. A new prognostic index was computed using the proposed model, and can be dynamically updated over time as new biomarker measurements become available.
Longitudinal measurements of commonly measured clinical biomarkers substantially improve the risk prediction of Huntington's disease diagnosis. Calculation of the prognostic index informs the patient's risk category and facilitates patient selection in future clinical trials.
亨廷顿舞蹈症(HD)已逐渐成为一种公共卫生威胁,人们对开发用于预测HD诊断时间的预后模型的兴趣与日俱增。
本研究旨在开发一种新型预后模型,该模型利用多种纵向生物标志物来评估HD风险。
采用多变量功能主成分分析来总结多个纵向标志物的基本信息,并获得一组预后评分。将这些预后评分用作Cox模型中的预测因子,以预测右删失诊断时间。我们使用交叉验证来确定PREDICT-HD(n = 1,039)和ENROLL-HD(n = 1,776)中的最佳模型;在ENROLL-HD中进行外部验证。
我们在PREDICT-HD和ENROLL-HD中考虑了六种常用的纵向生物标志物(总运动评分、符号数字模态测试、斯特鲁普单词测试、斯特鲁普颜色测试、斯特鲁普干扰测试和总功能能力)。与具有基线生物标志物信息的模型相比,利用这些纵向生物标志物的预后模型显著提高了预测性能。使用所提出的模型计算了一个新的预后指数,并且随着新的生物标志物测量数据的获得,该指数可以随时间动态更新。
常用临床生物标志物的纵向测量显著改善了亨廷顿舞蹈症诊断的风险预测。预后指数的计算可告知患者的风险类别,并有助于在未来的临床试验中进行患者选择。