Suppr超能文献

基于小波域中中心对称局部二值模式(Center Symmetric-LBP)特征并使用随机森林的有效乳腺X光图像分类

Effective mammogram classification based on center symmetric-LBP features in wavelet domain using random forests.

作者信息

Singh Vibhav Prakash, Srivastava Subodh, Srivastava Rajeev

出版信息

Technol Health Care. 2017 Aug 9;25(4):709-727. doi: 10.3233/THC-170851.

Abstract

Mammogram classification is a crucial and challenging problem, because it helps in early diagnosis of breast cancer and supports radiologists in their decision to analyze similar mammograms out of a database by recognizing the classes of current mammograms. This paper proposes an effective method for classifying mammograms using random forests with wavelet based center-symmetric local binary pattern (WCS-LBP). To classify mammograms, multi-resolution CS-LBP texture characteristics from non-overlapping regions of the mammograms are captured. Further, we examine most relevant features using support vector machine-recursive feature elimination (SVM-RFE). Finally, we feed the selected features to decision trees and construct random forests which are an ensemble of random decision trees. Using wavelet based local CS-LBP features with random forest, we classify the test images into different categories having the maximum posterior probability. The proposed method shows the improved performance as compared with other variant features and state-of-art methods. The obtained performance measures are 97.3% accuracy, 97.3% precision, 97.2% recall, 97.2% F-measure and 94.1% Matthews correlation coefficient (MCC).

摘要

乳房X光片分类是一个至关重要且具有挑战性的问题,因为它有助于乳腺癌的早期诊断,并通过识别当前乳房X光片的类别,辅助放射科医生从数据库中分析相似的乳房X光片。本文提出了一种使用基于小波的中心对称局部二值模式(WCS-LBP)的随机森林对乳房X光片进行分类的有效方法。为了对乳房X光片进行分类,从乳房X光片的非重叠区域捕获多分辨率CS-LBP纹理特征。此外,我们使用支持向量机递归特征消除(SVM-RFE)来检查最相关的特征。最后,我们将选定的特征输入决策树并构建随机森林,随机森林是随机决策树的集合。使用基于小波的局部CS-LBP特征和随机森林,我们将测试图像分类为具有最大后验概率的不同类别。与其他变体特征和现有方法相比,该方法表现出了更高的性能。获得的性能指标为:准确率97.3%、精确率97.3%、召回率97.2%、F值97.2%以及马修斯相关系数(MCC)94.1%。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验