Suppr超能文献

提高急诊科对儿童严重脓毒症的识别能力:基于生命体征的电子警报和床边临床医生识别的作用

Improving Recognition of Pediatric Severe Sepsis in the Emergency Department: Contributions of a Vital Sign-Based Electronic Alert and Bedside Clinician Identification.

作者信息

Balamuth Fran, Alpern Elizabeth R, Abbadessa Mary Kate, Hayes Katie, Schast Aileen, Lavelle Jane, Fitzgerald Julie C, Weiss Scott L, Zorc Joseph J

机构信息

Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA; Division of Emergency Medicine, Children's Hospital of Philadelphia, Philadelphia, PA.

Department of Pediatrics, Northwestern University Feinberg School of Medicine, and the Division of Emergency Medicine, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, IL.

出版信息

Ann Emerg Med. 2017 Dec;70(6):759-768.e2. doi: 10.1016/j.annemergmed.2017.03.019. Epub 2017 Jun 2.

Abstract

STUDY OBJECTIVE

Recognition of pediatric sepsis is a key clinical challenge. We evaluate the performance of a sepsis recognition process including an electronic sepsis alert and bedside assessment in a pediatric emergency department (ED).

METHODS

This was a cohort study with quality improvement intervention in a pediatric ED. Exposure was a positive electronic sepsis alert, defined as elevated pulse rate or hypotension, concern for infection, and at least one of the following: abnormal capillary refill, abnormal mental status, or high-risk condition. A positive electronic sepsis alert prompted team assessment or huddle to determine need for sepsis protocol. Clinicians could initiate team assessment or huddle according to clinical concern without positive electronic sepsis alert. Severe sepsis outcome defined as activation of the sepsis protocol in the ED or development of severe sepsis requiring ICU admission within 24 hours.

RESULTS

There were 182,509 ED visits during the study period, with 86,037 before electronic sepsis alert implementation and 96,472 afterward, and 1,112 (1.2%) positive electronic sepsis alerts. Overall, 326 patients (0.3%) were treated for severe sepsis within 24 hours. Test characteristics of the electronic sepsis alert alone to detect severe sepsis were sensitivity 86.2% (95% confidence interval [CI] 82.0% to 89.5%), specificity 99.1% (95% CI 99.0% to 99.2%), positive predictive value 25.4% (95% CI 22.8% to 28.0%), and negative predictive value 100% (95% CI 99.9% to 100%). Inclusion of the clinician screen identified 43 additional electronic sepsis alert-negative children, with severe sepsis sensitivity 99.4% (95% CI 97.8% to 99.8%) and specificity 99.1% (95% CI 99.1% to 99.2%). Electronic sepsis alert implementation increased ED sepsis detection from 83% to 96%.

CONCLUSION

Electronic sepsis alert for severe sepsis demonstrated good sensitivity and high specificity. Addition of clinician identification of electronic sepsis alert-negative patients further improved sensitivity. Implementation of the electronic sepsis alert was associated with improved recognition of severe sepsis.

摘要

研究目的

识别小儿脓毒症是一项关键的临床挑战。我们评估了一种脓毒症识别流程在儿科急诊科(ED)的表现,该流程包括电子脓毒症警报和床旁评估。

方法

这是一项在儿科急诊科进行的队列研究及质量改进干预。暴露因素为阳性电子脓毒症警报,定义为心率升高或低血压、存在感染担忧,以及以下至少一项:毛细血管再充盈异常、精神状态异常或高危状况。阳性电子脓毒症警报会促使团队进行评估或会诊,以确定是否需要启动脓毒症诊疗方案。临床医生可根据临床担忧在无阳性电子脓毒症警报的情况下启动团队评估或会诊。严重脓毒症结局定义为在急诊科启动脓毒症诊疗方案,或在24小时内发展为需要入住重症监护病房的严重脓毒症。

结果

研究期间共有182,509次急诊就诊,其中在实施电子脓毒症警报前有86,037次,之后有96,472次,阳性电子脓毒症警报1,112次(1.2%)。总体而言,326例患者(0.3%)在24小时内接受了严重脓毒症治疗。仅电子脓毒症警报检测严重脓毒症的测试特征为敏感性86.2%(95%置信区间[CI]82.0%至89.5%),特异性99.1%(95%CI99.0%至99.2%),阳性预测值25.4%(95%CI22.8%至28.0%),阴性预测值100%(95%CI99.9%至100%)。纳入临床医生筛查又识别出43例电子脓毒症警报阴性的儿童,严重脓毒症敏感性为99.4%(95%CI97.8%至99.8%),特异性为99.1%(95%CI99.1%至99.2%)。电子脓毒症警报的实施使急诊科脓毒症检测率从83%提高到96%。

结论

针对严重脓毒症的电子脓毒症警报显示出良好的敏感性和高特异性。增加临床医生对电子脓毒症警报阴性患者的识别进一步提高了敏感性。电子脓毒症警报的实施与严重脓毒症识别率的提高相关。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dc07/5698118/c85b8af7dbe4/nihms862984f1.jpg

相似文献

4

引用本文的文献

本文引用的文献

2
Implementation of an Inpatient Pediatric Sepsis Identification Pathway.实施住院儿科脓毒症识别路径。
Pediatrics. 2016 Mar;137(3):e20144082. doi: 10.1542/peds.2014-4082. Epub 2016 Feb 10.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验