Read Robert W, Berube Paul M, Biller Steven J, Neveux Iva, Cubillos-Ruiz Andres, Chisholm Sallie W, Grzymski Joseph J
Division of Earth and Ecosystem Sciences, Desert Research Institute, Reno, NV, USA.
Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
ISME J. 2017 Oct;11(10):2267-2278. doi: 10.1038/ismej.2017.88. Epub 2017 Jun 6.
Prochlorococcus is a globally abundant marine cyanobacterium with many adaptations that reduce cellular nutrient requirements, facilitating growth in its nutrient-poor environment. One such genomic adaptation is the preferential utilization of amino acids containing fewer N-atoms, which minimizes cellular nitrogen requirements. We predicted that transcriptional regulation might further reduce cellular N budgets during transient N limitation. To explore this, we compared transcription start sites (TSSs) in Prochlorococcus MED4 under N-deprived and N-replete conditions. Of 64 genes with primary and internal TSSs in both conditions, N-deprived cells initiated transcription downstream of primary TSSs more frequently than N-replete cells. Additionally, 117 genes with only an internal TSS demonstrated increased internal transcription under N-deprivation. These shortened transcripts encode predicted proteins with an average of 21% less N content compared to full-length transcripts. We hypothesized that low translation rates, which afford greater control over protein abundances, would be beneficial to relatively slow-growing organisms like Prochlorococcus. Consistent with this idea, we found that Prochlorococcus exhibits greater usage of glycine-glycine motifs, which causes translational pausing, when compared to faster growing microbes. Our findings indicate that structural changes occur within the Prochlorococcus MED4 transcriptome during N-deprivation, potentially altering the size and structure of proteins expressed under nutrient limitation.
原绿球藻是一种在全球范围内数量丰富的海洋蓝细菌,具有多种适应性特征,可降低细胞对营养物质的需求,从而在营养匮乏的环境中促进生长。其中一种基因组适应性变化是优先利用含氮原子较少的氨基酸,这将细胞对氮的需求降至最低。我们预测,转录调控可能会在短暂的氮限制期间进一步减少细胞的氮预算。为了探究这一点,我们比较了原绿球藻MED4在氮缺乏和氮充足条件下的转录起始位点(TSS)。在两种条件下都具有主要和内部TSS的64个基因中,氮缺乏的细胞比氮充足的细胞更频繁地在主要TSS的下游起始转录。此外,117个仅具有内部TSS的基因在氮缺乏时内部转录增加。与全长转录本相比,这些缩短的转录本编码的预测蛋白质平均含氮量少21%。我们假设,较低的翻译速率能够更好地控制蛋白质丰度,这对像原绿球藻这样生长相对缓慢的生物体有益。与这一观点一致的是,我们发现与生长较快的微生物相比,原绿球藻对甘氨酸 - 甘氨酸基序的使用更多,这会导致翻译暂停。我们的研究结果表明,在氮缺乏期间,原绿球藻MED4转录组内会发生结构变化,可能会改变在营养限制条件下表达的蛋白质的大小和结构。