Wu Xuerui, Jin Shuanggen, Xia Junming
Shanghai Astronomical Observatory, Chinese Academy of Sciences, Shanghai 200030, China.
Key Laboratory of Planetary Sciences, Chinese Academy of Sciences, Shanghai 200030, China.
Sensors (Basel). 2017 Jun 5;17(6):1291. doi: 10.3390/s17061291.
Global Navigation Satellite Systems (GNSS) have been widely used in navigation, positioning and timing. Nowadays, the multipath errors may be re-utilized for the remote sensing of geophysical parameters (soil moisture, vegetation and snow depth), i.e., GPS-Multipath Reflectometry (GPS-MR). However, bistatic scattering properties and the relation between GPS observables and geophysical parameters are not clear, e.g., vegetation. In this paper, a new element on bistatic scattering properties of vegetation is incorporated into the traditional GPS-MR model. This new element is the first-order radiative transfer equation model. The new forward GPS multipath simulator is able to explicitly link the vegetation parameters with GPS multipath observables (signal-to-noise-ratio (SNR), code pseudorange and carrier phase observables). The trunk layer and its corresponding scattering mechanisms are ignored since GPS-MR is not suitable for high forest monitoring due to the coherence of direct and reflected signals. Based on this new model, the developed simulator can present how the GPS signals (L1 and L2 carrier frequencies, C/A, P(Y) and L2C modulations) are transmitted (scattered and absorbed) through vegetation medium and received by GPS receivers. Simulation results show that the wheat will decrease the amplitudes of GPS multipath observables (SNR, phase and code), if we increase the vegetation moisture contents or the scatters sizes (stem or leaf). Although the Specular-Ground component dominates the total specular scattering, vegetation covered ground soil moisture has almost no effects on the final multipath signatures. Our simulated results are consistent with previous results for environmental parameter detections by GPS-MR.
全球导航卫星系统(GNSS)已广泛应用于导航、定位和授时。如今,多径误差可被重新用于地球物理参数(土壤湿度、植被和雪深)的遥感,即GPS多径反射测量法(GPS-MR)。然而,双基地散射特性以及GPS观测值与地球物理参数之间的关系尚不清楚,例如植被。本文将植被双基地散射特性的一个新要素纳入传统的GPS-MR模型。这个新要素是一阶辐射传输方程模型。新的前向GPS多径模拟器能够将植被参数与GPS多径观测值(信噪比(SNR)、码伪距和载波相位观测值)明确联系起来。由于GPS-MR不适合用于高森林监测,因为直接信号和反射信号具有相干性,所以忽略了树干层及其相应的散射机制。基于这个新模型,开发的模拟器可以展示GPS信号(L1和L2载波频率、C/A、P(Y)和L2C调制)如何通过植被介质传输(散射和吸收)并被GPS接收机接收。模拟结果表明,如果增加植被湿度含量或散射体尺寸(茎或叶),小麦会降低GPS多径观测值(SNR、相位和码)的幅度。尽管镜面-地面分量在总镜面散射中占主导地位,但植被覆盖地面的土壤湿度对最终的多径特征几乎没有影响。我们的模拟结果与之前通过GPS-MR进行环境参数检测的结果一致。