Vanderstichele Hugo, Demeyer Leentje, Janelidze Shorena, Coart Els, Stoops Erik, Mauroo Kimberley, Herbst Victor, François Cindy, Hansson Oskar
ADx NeuroSciences, Technologiepark 4, Gent, Belgium.
Clinical Memory Research Unit, Department of Clinical Sciences, Lund University, Malmö, Sweden.
Alzheimers Res Ther. 2017 Jun 6;9(1):40. doi: 10.1186/s13195-017-0265-7.
The pathophysiology of neurodegeneration is complex. Its diagnosis requires an early identification of sequential changes in several hallmarks in the brains of affected subjects. The presence of brain pathology can be visualized in the cerebrospinal fluid (CSF) by protein profiling. It is clear that the field of Alzheimer's disease (AD) will benefit from an integration of algorithms including CSF concentrations of individual proteins, especially as an aid in clinical decision-making or to improve patient enrolment in clinical trials. The protein profiling approach requires standard operating procedures for collection and storage of CSF which must be easy to integrate into a routine clinical lab environment. Our study provides recommendations for analysis of neurogranin trunc P75, α-synuclein, and tau, in combination with the ratio of β-amyloid Aβ(1-42)/Aβ(1-40).
Protocols for CSF collection were compared with CSF derived from subjects with normal pressure hydrocephalus (n = 19). Variables included recipient type (collection, storage), tube volume, and addition of detergents at the time of collection. CSF biomarker analysis was performed with enzyme-linked immunosorbent assays (ELISAs). Data were analyzed with linear repeated measures and mixed effects models.
Adsorption to recipients is lower for neurogranin trunc P75, α-synuclein, and tau (<10%), as compared to Aβ(1-42). For neurogranin trunc P75 and total tau, there is still an effect on analyte concentrations as a function of the tube volume. Protocol-related differences for Aβ(1-42) can be normalized at the (pre-)analytical level using the ratio Aβ(1-42)/Aβ(1-40), but not by using the ratio Aβ(1-42)/tau. The addition of detergent at the time of collection eliminates differences due to adsorption.
Our study recommends the use of low protein binding tubes for quantification in CSF (without additives) of all relevant CSF biomarkers. Pre-analytical factors have less effect on α-synuclein, neurogranin trunc P75, and total tau, as compared to Aβ(1-42). The ratio of Aβ(1-42)/Aβ(1-40), but not Aβ(1-42)/tau, can be used to adjust for pre-analytical differences in analyte concentrations. Our study does not recommend the inclusion of detergents at the time of collection of CSF. The present results provide an experimental basis for new recommendations for parallel analysis of several proteins using one protocol for collection and storage of CSF.
神经退行性变的病理生理学很复杂。其诊断需要早期识别受影响个体大脑中多个特征的连续变化。通过蛋白质谱分析可在脑脊液(CSF)中观察到脑病理学特征。显然,阿尔茨海默病(AD)领域将受益于整合包括个体蛋白质脑脊液浓度在内的算法,特别是有助于临床决策或改善临床试验中的患者招募。蛋白质谱分析方法需要脑脊液采集和储存的标准操作程序,且必须易于整合到常规临床实验室环境中。我们的研究为神经颗粒蛋白截短体P75、α-突触核蛋白和tau蛋白的分析提供了建议,并结合β-淀粉样蛋白Aβ(1 - 42)/Aβ(1 - 40)的比值。
将脑脊液采集方案与来自正常压力脑积水患者(n = 19)的脑脊液进行比较。变量包括接受器类型(采集、储存)、试管体积以及采集时添加去污剂的情况。采用酶联免疫吸附测定(ELISA)进行脑脊液生物标志物分析。使用线性重复测量和混合效应模型分析数据。
与Aβ(1 - 42)相比,神经颗粒蛋白截短体P75、α-突触核蛋白和tau蛋白在接受器上的吸附较低(<10%)。对于神经颗粒蛋白截短体P75和总tau蛋白,分析物浓度仍受试管体积的影响。Aβ(1 - 42)与方案相关的差异可在分析前水平通过Aβ(1 - 42)/Aβ(1 - 40)的比值进行标准化,但不能通过Aβ(1 - 42)/tau的比值。采集时添加去污剂可消除因吸附导致的差异。
我们的研究建议使用低蛋白结合试管对所有相关脑脊液生物标志物进行脑脊液(无添加剂)定量分析。与Aβ(1 - 42)相比,分析前因素对α-突触核蛋白、神经颗粒蛋白截短体P75和总tau蛋白的影响较小。Aβ(1 - 42)/Aβ(1 - 40)的比值而非Aβ(1 - 42)/tau的比值可用于调整分析物浓度的分析前差异。我们的研究不建议在脑脊液采集时添加去污剂。目前的结果为使用一种脑脊液采集和储存方案对多种蛋白质进行平行分析的新建议提供了实验依据。