Suppr超能文献

穿越噪声驱动的可激发系统的准阈值流形。

Crossing the quasi-threshold manifold of a noise-driven excitable system.

作者信息

Chen Zhen, Zhu Jinjie, Liu Xianbin

机构信息

State Key Lab of Mechanics and Control for Mechanical Structures, College of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics, 29 YuDao Street, Nanjing 210016, People's Republic of China.

出版信息

Proc Math Phys Eng Sci. 2017 May;473(2201):20170058. doi: 10.1098/rspa.2017.0058. Epub 2017 May 17.

Abstract

We consider the noise-induced escapes in an excitable system possessing a quasi-threshold manifold, along which there exists a certain point of minimal quasi-potential. In the weak noise limit, the optimal escaping path turns out to approach this particular point asymptotically, making it analogous to an ordinary saddle. Numerical simulations are performed and an elaboration on the effect of small but finite noise is given, which shows that the ridges where the prehistory probability distribution peaks are located mainly within the region where the quasi-potential increases gently. The cases allowing anisotropic noise are discussed and we found that varying the noise term in the slow variable would dramatically raise the whole level of quasi-potentials, leading to significant changes in both patterns of optimal paths and exit locations.

摘要

我们考虑在具有准阈值流形的可激发系统中的噪声诱导逃逸,沿着该流形存在某个最小准势点。在弱噪声极限下,最优逃逸路径渐近地趋近于这个特定点,使其类似于普通鞍点。进行了数值模拟,并阐述了小但有限噪声的影响,结果表明,预历史概率分布峰值所在的脊主要位于准势平缓增加的区域内。讨论了允许各向异性噪声的情况,我们发现改变慢变量中的噪声项会显著提高准势的整体水平,导致最优路径模式和出口位置都发生显著变化。

相似文献

1
Crossing the quasi-threshold manifold of a noise-driven excitable system.
Proc Math Phys Eng Sci. 2017 May;473(2201):20170058. doi: 10.1098/rspa.2017.0058. Epub 2017 May 17.
4
Critical manifold of globally coupled overdamped anharmonic oscillators driven by additive Gaussian white noise.
Phys Rev E Stat Nonlin Soft Matter Phys. 2013 Aug;88(2):022114. doi: 10.1103/PhysRevE.88.022114. Epub 2013 Aug 9.
5
Breakdown of fast-slow analysis in an excitable system with channel noise.
Phys Rev Lett. 2013 Sep 20;111(12):128101. doi: 10.1103/PhysRevLett.111.128101.
7
Steering most probable escape paths by varying relative noise intensities.
Phys Rev Lett. 2014 Jul 11;113(2):020601. doi: 10.1103/PhysRevLett.113.020601. Epub 2014 Jul 7.
8
Theoretical analysis for critical fluctuations of relaxation trajectory near a saddle-node bifurcation.
Phys Rev E Stat Nonlin Soft Matter Phys. 2010 Jul;82(1 Pt 1):011127. doi: 10.1103/PhysRevE.82.011127. Epub 2010 Jul 20.
9
Stochastic sensitivity analysis of the noise-induced excitability in a model of a hair bundle.
Phys Rev E Stat Nonlin Soft Matter Phys. 2013 May;87(5):052711. doi: 10.1103/PhysRevE.87.052711. Epub 2013 May 17.
10
Stochastic switching in slow-fast systems: a large-fluctuation approach.
Phys Rev E Stat Nonlin Soft Matter Phys. 2014 Feb;89(2):022919. doi: 10.1103/PhysRevE.89.022919. Epub 2014 Feb 21.

本文引用的文献

1
Subtle escaping modes and subset of patterns from a nonhyperbolic chaotic attractor.
Phys Rev E. 2017 Jan;95(1-1):012208. doi: 10.1103/PhysRevE.95.012208. Epub 2017 Jan 17.
2
Subthreshold and suprathreshold vibrational resonance in the FitzHugh-Nagumo neuron model.
Phys Rev E. 2016 Sep;94(3-1):032208. doi: 10.1103/PhysRevE.94.032208. Epub 2016 Sep 8.
4
Balls, cups, and quasi-potentials: quantifying stability in stochastic systems.
Ecology. 2016 Apr;97(4):850-64. doi: 10.1890/15-1047.1.
5
Activation process in excitable systems with multiple noise sources: Large number of units.
Phys Rev E Stat Nonlin Soft Matter Phys. 2015 Dec;92(6):062912. doi: 10.1103/PhysRevE.92.062912. Epub 2015 Dec 14.
6
Activation process in excitable systems with multiple noise sources: One and two interacting units.
Phys Rev E Stat Nonlin Soft Matter Phys. 2015 Dec;92(6):062911. doi: 10.1103/PhysRevE.92.062911. Epub 2015 Dec 14.
7
Solution of the boundary value problem for optimal escape in continuous stochastic systems and maps.
Phys Rev E Stat Nonlin Soft Matter Phys. 2005 Sep;72(3 Pt 2):036131. doi: 10.1103/PhysRevE.72.036131. Epub 2005 Sep 29.
8
Two distinct mechanisms of coherence in randomly perturbed dynamical systems.
Phys Rev E Stat Nonlin Soft Matter Phys. 2005 Sep;72(3 Pt 1):031105. doi: 10.1103/PhysRevE.72.031105. Epub 2005 Sep 14.
9
Spatial coherence resonance in excitable media.
Phys Rev E Stat Nonlin Soft Matter Phys. 2005 Jul;72(1 Pt 2):016207. doi: 10.1103/PhysRevE.72.016207. Epub 2005 Jul 13.
10
A quantitative description of membrane current and its application to conduction and excitation in nerve.
J Physiol. 1952 Aug;117(4):500-44. doi: 10.1113/jphysiol.1952.sp004764.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验