Department of Biomedical Engineering, Virginia Commonwealth University, 601 West Main Street, Richmond, Virginia 23284.
Department of Biomedical Engineering, Georgia Institute of Technology, 313 Ferst Drive NW, Atlanta, Georgia, USA.
J Biomed Mater Res A. 2017 Oct;105(10):2742-2749. doi: 10.1002/jbm.a.36137. Epub 2017 Jun 27.
Biologics can improve bone formation, but may diffuse away from sites of therapeutic need. We developed a click-chemistry hydrogel that rapidly polymerizes in situ to control delivery of biologics during post-suturectomy resynostosis in 21-day-old male mice. Here, we used this model to determine the role of angiogenesis in post-suturectomy resynostosis and examine whether controlled release of angiogenesis inhibitors could delay bone regeneration. Hydrogels [DB-co-PEG/poly (TEGDMA)-co-(N3-TEGDMA)] were produced containing anti-angiogenic compounds [anti-VEGFA-antibody or hypoxia inducible factor 1α-inhibitor topotecan]. Bioactivity in vitro was assessed by tube length and branching points of endothelial cells in hydrogel-conditioned media. In vivo effects were examined 14 day post-suturectomy, based on the temporal analysis of angiogenic mRNAs during resynostosis following posterior frontal suture removal. MicroCT was used to quantify angiogenesis in contrast-agent-perfused blood vessels and bone defect size in defects receiving hydrogel, anti-VEGFA/hydrogel, or topotecan/hydrogel. Shorter endothelial tube length and less branching were seen in inhibitor-conditioned media (topotecan > AbVEGFA). In vivo, both compounds inhibited angiogenesis compared with hydrogel-only. Anti-VEGFA/hydrogel reduced resynostosis compared with empty defects, but topotecan/hydrogel blocked bone regeneration. We demonstrate that anti-angiogenic compounds can be incorporated into a spontaneously polymerizing hydrogel and remain active over 14 days in vitro and in vivo. Moreover, bone formation can be delayed by inhibiting neovascularization, suggesting possible use as a therapeutic to control resynostosis following suturectomies and potential applications in other conditions where rapid osteogenesis is not desired. © 2017 Wiley Periodicals Inc. J Biomed Mater Res Part A: 105A: 2742-2749, 2017.
生物制剂可以促进骨形成,但可能会从治疗所需的部位扩散。我们开发了一种点击化学水凝胶,它可以在原位快速聚合,以控制 21 天大雄性小鼠缝线切除后再融合过程中的生物制剂的递送。在这里,我们使用该模型来确定血管生成在缝线切除后再融合中的作用,并研究是否可以通过控制释放血管生成抑制剂来延迟骨再生。水凝胶[DB-co-PEG/聚(TEGDMA)-co-(N3-TEGDMA)]含有抗血管生成化合物[抗 VEGF-A 抗体或缺氧诱导因子 1α抑制剂拓扑替康]。通过在水凝胶条件培养基中内皮细胞的管长度和分支点来评估体外生物活性。在缝线切除后 14 天,根据血管生成 mRNA 在后部额缝切除后再融合过程中的时间分析,检查体内作用。微 CT 用于量化对比剂灌注血管中的血管生成和接受水凝胶、抗 VEGF/水凝胶或拓扑替康/水凝胶的骨缺损大小。在抑制剂条件培养基中观察到较短的内皮管长度和较少的分支(拓扑替康>AbVEGFA)。在体内,与单独的水凝胶相比,这两种化合物都抑制了血管生成。与空缺陷相比,抗 VEGF/水凝胶减少了再融合,但拓扑替康/水凝胶阻止了骨再生。我们证明了抗血管生成化合物可以掺入到自聚合水凝胶中,并在体外和体内 14 天内保持活性。此外,通过抑制新生血管化可以延迟骨形成,这表明它可能作为控制缝线切除后再融合的治疗方法具有潜在应用,并且在其他不希望快速成骨的情况下也具有潜在应用。 © 2017 Wiley Periodicals Inc. J 生物材料 Res 部分 A:105A:2742-2749,2017。