School of Chemistry & Chemical Engineering, South China University of Technology, No. 381 Wushan Road, Guangzhou, 510640, P.R. China.
Institute of Physical Chemistry and Electrochemistry, Leibniz University of Hannover, Callinstrasse 3A, 30167, Hannover, Germany.
Angew Chem Int Ed Engl. 2017 Jul 24;56(31):8974-8980. doi: 10.1002/anie.201701288. Epub 2017 Jun 7.
Two-dimensional (2D) graphitic carbon nitride (g-C N ) nanosheets show brilliant application potential in numerous fields. Herein, a membrane with artificial nanopores and self-supporting spacers was fabricated by assembly of 2D g-C N nanosheets in a stack with elaborate structures. In water purification the g-C N membrane shows a better separation performance than commercial membranes. The g-C N membrane has a water permeance of 29 L m h bar and a rejection rate of 87 % for 3 nm molecules with a membrane thickness of 160 nm. The artificial nanopores in the g-C N nanosheets and the spacers between the partially exfoliated g-C N nanosheets provide nanochannels for water transport while bigger molecules are retained. The self-supported nanochannels in the g-C N membrane are very stable and rigid enough to resist environmental challenges, such as changes to pH and pressure conditions. Permeation experiments and molecular dynamics simulations indicate that a novel nanofluidics phenomenon takes place, whereby water transport through the g-C N nanosheet membrane occurs with ultralow friction. The findings provide new understanding of fluidics in nanochannels and illuminate a fabrication method by which rigid nanochannels may be obtained for applications in complex or harsh environments.
二维(2D)石墨相氮化碳(g-C3N4)纳米片在许多领域显示出出色的应用潜力。在此,通过具有精细结构的二维 g-C3N4纳米片堆叠组装,制备了具有人工纳米孔和自支撑间隔物的膜。在水净化中,g-C3N4膜比商业膜具有更好的分离性能。g-C3N4膜的水透过率为 29 L·m-1·h-1·bar-1,对于 3nm 分子的截留率为 87%,膜厚为 160nm。g-C3N4纳米片中的人工纳米孔和部分剥离的 g-C3N4纳米片之间的间隔物为水传输提供了纳米通道,同时保留了较大的分子。g-C3N4膜中的自支撑纳米通道非常稳定且刚性足以抵抗环境挑战,例如 pH 值和压力条件的变化。渗透实验和分子动力学模拟表明,发生了一种新的纳流体力现象,即通过 g-C3N4纳米片膜的水传输以超低摩擦发生。这些发现为纳米通道中的流体力学提供了新的认识,并阐明了一种通过该方法可以获得刚性纳米通道的制造方法,可将其应用于复杂或恶劣的环境中。