Université Paris Est, Laboratoire Navier, UMR 8205 CNRS -École des Ponts ParisTech - IFSTTAR cité Descartes, 2 allée Kepler, 77420 Champs-sur-Marne, France.
Soft Matter. 2017 Jun 28;13(25):4533-4540. doi: 10.1039/c7sm00679a.
Mixing solid particles with liquid foam is a common process used in industry for manufacturing aerated materials. Desire for improvement of involved industrial processes and optimization of resulting foamed materials stimulates fundamental research on those complex mixtures of grains, bubbles and liquid. In this paper, we generate well-controlled particle-loaded liquid foams and we determine their elastic behavior as a function of particle size (6-3000 μm) and particle volume fraction (0-6%). We focus on both the elastic modulus exhibited by the material at small strain and the strain marking the end of the linear elastic regime. Results reveal the existence of a critical particle-to-bubble size ratio triggering a sharp transition between two well-defined regimes. For small size ratios, the behavior is governed by the mechanical properties of the solid grains, which have been proved to pack in the shape of a foam-embedded granular skeleton. In contrast, bubbles elasticity prevails in the second regime, where isolated large particles contribute only weakly to the rheological behavior of the foamed material. The modeling of elasticity for each regime allows for this transition to be normalized and compared with previously reported particle size-induced effects for foam drainage (Haffner et al. J. Colloid Interface Sci., 2015, 458, 200-208) and solid foam mechanics (Khidas et al., Compos. Sci. Technol., 2015, 119, 62-67). This highlights that rheology and the other properties of particle-loaded foams are subjected to the same size-induced morphological transition.
将固体颗粒与液体泡沫混合是工业中制造充气材料的常用工艺。对涉及的工业过程的改进和由此产生的泡沫材料的优化的渴望,刺激了对这些颗粒、气泡和液体的复杂混合物的基础研究。在本文中,我们生成了控制良好的载颗粒液体泡沫,并确定了它们的弹性行为作为颗粒尺寸(6-3000 μm)和颗粒体积分数(0-6%)的函数。我们既关注材料在小应变下表现出的弹性模量,也关注标志线性弹性区结束的应变。结果表明,存在一个临界颗粒-气泡尺寸比,触发了两个明确定义的区之间的急剧转变。对于小的尺寸比,行为由固体颗粒的机械性能控制,已经证明这些颗粒以嵌入泡沫的颗粒骨架的形式进行堆积。相比之下,在第二个区中,气泡的弹性占主导地位,孤立的大颗粒对泡沫材料的流变行为贡献较弱。每个区的弹性建模允许对这种转变进行归一化,并与以前报道的泡沫排水(Haffner 等人,J. Colloid Interface Sci.,2015,458,200-208)和固体泡沫力学(Khidas 等人,Compos. Sci. Technol.,2015,119,62-67)中颗粒尺寸诱导的效应进行比较。这突出表明,载颗粒泡沫的流变学和其他性质受到相同的尺寸诱导的形态转变的影响。