Suppr超能文献

一种用于多项式逻辑回归的多路多任务学习方法*。在多个诊所预约错失机会联合预测中的应用。

A Multi-way Multi-task Learning Approach for Multinomial Logistic Regression*. An Application in Joint Prediction of Appointment Miss-opportunities across Multiple Clinics.

作者信息

Alaeddini Adel, Hong Seung Hee

机构信息

Adel Alaeddini, Department of Mechanical Engineering, University of Texas at San Antonio, San Antonio, TX, USA, E-mail:

出版信息

Methods Inf Med. 2017 Aug 11;56(4):294-307. doi: 10.3414/ME16-01-0112. Epub 2017 Jun 7.

Abstract

OBJECTIVES

Whether they have been engineered for it or not, most healthcare systems experience a variety of unexpected events such as appointment miss-opportunities that can have significant impact on their revenue, cost and resource utilization. In this paper, a multi-way multi-task learning model based on multinomial logistic regression is proposed to jointly predict the occurrence of different types of miss-opportunities at multiple clinics.

METHODS

An extension of L / L regularization is proposed to enable transfer of information among various types of miss-opportunities as well as different clinics. A proximal algorithm is developed to transform the convex but non-smooth likelihood function of the multi-way multi-task learning model into a convex and smooth optimization problem solvable using gradient descent algorithm.

RESULTS

A dataset of real attendance records of patients at four different clinics of a VA medical center is used to verify the performance of the proposed multi-task learning approach. Additionally, a simulation study, investigating more general data situations is provided to highlight the specific aspects of the proposed approach. Various individual and integrated multinomial logistic regression models with/without LASSO penalty along with a number of other common classification algorithms are fitted and compared against the proposed multi-way multi-task learning approach. Fivefold cross validation is used to estimate comparing models parameters and their predictive accuracy. The multi-way multi-task learning framework enables the proposed approach to achieve a considerable rate of parameter shrinkage and superior prediction accuracy across various types of miss-opportunities and clinics.

CONCLUSIONS

The proposed approach provides an integrated structure to effectively transfer knowledge among different miss-opportunities and clinics to reduce model size, increase estimation efficacy, and more importantly improve predictions results. The proposed framework can be effectively applied to medical centers with multiple clinics, especially those suffering from information scarcity on some type of disruptions and/or clinics.

摘要

目标

无论是否经过专门设计,大多数医疗系统都会经历各种意外事件,例如预约错失机会,这些事件会对其收入、成本和资源利用产生重大影响。本文提出了一种基于多项逻辑回归的多向多任务学习模型,用于联合预测多个诊所不同类型错失机会的发生情况。

方法

提出了L / L正则化的扩展,以实现不同类型错失机会以及不同诊所之间的信息传递。开发了一种近端算法,将多向多任务学习模型的凸但非光滑似然函数转化为一个可使用梯度下降算法求解的凸且光滑的优化问题。

结果

使用退伍军人事务部医疗中心四个不同诊所患者的真实出勤记录数据集来验证所提出的多任务学习方法的性能。此外,还提供了一项模拟研究,调查更一般的数据情况,以突出所提出方法的具体方面。拟合了各种带有/不带有LASSO惩罚的个体和集成多项逻辑回归模型以及一些其他常见分类算法,并与所提出的多向多任务学习方法进行比较。使用五折交叉验证来估计比较模型的参数及其预测准确性。多向多任务学习框架使所提出的方法能够在各种类型的错失机会和诊所中实现相当高的参数收缩率和卓越的预测准确性。

结论

所提出的方法提供了一种集成结构,可在不同的错失机会和诊所之间有效地传递知识,以减小模型规模、提高估计效率,更重要的是改善预测结果。所提出的框架可以有效地应用于拥有多个诊所的医疗中心,尤其是那些在某些类型的干扰和/或诊所方面信息稀缺的医疗中心。

相似文献

2
Building interpretable predictive models for pediatric hospital readmission using Tree-Lasso logistic regression.
Artif Intell Med. 2016 Sep;72:12-21. doi: 10.1016/j.artmed.2016.07.003. Epub 2016 Jul 29.
3
A probabilistic model for predicting the probability of no-show in hospital appointments.
Health Care Manag Sci. 2011 Jun;14(2):146-57. doi: 10.1007/s10729-011-9148-9. Epub 2011 Feb 1.
4
A universal deep learning approach for modeling the flow of patients under different severities.
Comput Methods Programs Biomed. 2018 Feb;154:191-203. doi: 10.1016/j.cmpb.2017.11.003. Epub 2017 Nov 7.
7
Hierarchical Clustering Multi-Task Learning for Joint Human Action Grouping and Recognition.
IEEE Trans Pattern Anal Mach Intell. 2017 Jan;39(1):102-114. doi: 10.1109/TPAMI.2016.2537337. Epub 2016 Mar 2.
8
Multi-Task Learning for Compositional Data via Sparse Network Lasso.
Entropy (Basel). 2022 Dec 17;24(12):1839. doi: 10.3390/e24121839.
9
Efficient methods for overlapping group lasso.
IEEE Trans Pattern Anal Mach Intell. 2013 Sep;35(9):2104-16. doi: 10.1109/TPAMI.2013.17.
10
Applications of Bayesian shrinkage prior models in clinical research with categorical responses.
BMC Med Res Methodol. 2022 Apr 28;22(1):126. doi: 10.1186/s12874-022-01560-6.

引用本文的文献

1
Machine Learning Predictions on Outpatient No-Show Appointments in a Malaysia Major Tertiary Hospital.
Malays J Med Sci. 2023 Oct;30(5):169-180. doi: 10.21315/mjms2023.30.5.14. Epub 2023 Oct 30.
3
Artificial intelligence predictive system of individual survival rate for lung adenocarcinoma.
Comput Struct Biotechnol J. 2022 May 14;20:2352-2359. doi: 10.1016/j.csbj.2022.05.005. eCollection 2022.
8
Patient No-Show Prediction: A Systematic Literature Review.
Entropy (Basel). 2020 Jun 17;22(6):675. doi: 10.3390/e22060675.

本文引用的文献

2
Treatment of HIV in outpatients with schizophrenia, schizoaffective disorder and bipolar disease at two county clinics.
Community Ment Health J. 2011 Dec;47(6):668-71. doi: 10.1007/s10597-011-9399-4. Epub 2011 Mar 8.
3
Rural HIV-infected women's access to medical care: ongoing needs in California.
AIDS Care. 2011 Jul;23(7):792-6. doi: 10.1080/09540121.2010.516345.
4
A probabilistic model for predicting the probability of no-show in hospital appointments.
Health Care Manag Sci. 2011 Jun;14(2):146-57. doi: 10.1007/s10729-011-9148-9. Epub 2011 Feb 1.
6
Using no-show modeling to improve clinic performance.
Health Informatics J. 2010 Dec;16(4):246-59. doi: 10.1177/1460458210380521.
7
A systematic review of the relationship of diabetes mellitus, depression, and missed appointments in a low-income uninsured population.
Arch Psychiatr Nurs. 2010 Oct;24(5):317-29. doi: 10.1016/j.apnu.2009.12.004. Epub 2010 Feb 10.
10
Prompts to encourage appointment attendance for people with serious mental illness.
Schizophr Bull. 2010 Sep;36(5):910-1. doi: 10.1093/schbul/sbq050. Epub 2010 May 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验