Université de Toulouse Paul Sabatier, 31062 Toulouse cedex 9, France.
Centre de Recherche Cerveau et Cognition, CNRS, UMR 5549, BP 25202, 31052 Toulouse Cedex Toulouse, France.
eNeuro. 2017 Jun 7;4(3). doi: 10.1523/ENEURO.0078-17.2017. eCollection 2017 May-Jun.
Recent evidence has shown a rhythmic modulation of perception: prestimulus ongoing electroencephalography (EEG) phase in the θ (4-8 Hz) and α (8-13 Hz) bands has been directly linked with fluctuations in target detection. In fact, the ongoing EEG phase directly reflects cortical excitability: it acts as a gating mechanism for information flow at the neuronal level. Consequently, the key phase modulating perception should be the one present in the brain when the stimulus is actually being processed. Most previous studies, however, reported phase modulation peaking 100 ms or more before target onset. To explain this discrepancy, we first use simulations showing that contamination of spontaneous oscillatory signals by target-evoked ERP and signal filtering (e.g., wavelet) can result in an apparent shift of the peak phase modulation towards earlier latencies, potentially reaching the prestimulus period. We then present a paradigm based on linear systems analysis which can uncover the true latency at which ongoing EEG phase influences perception. After measuring the impulse response function, we use it to reconstruct (rather than record) the brain activity of human observers during white noise sequences. We can then present targets in those sequences, and reliably estimate EEG phase around these targets without any influence of the target-evoked response. We find that in these reconstructed signals, the important phase for perception is that of fronto-occipital ∼6 Hz background oscillations at about 75 ms after target onset. These results confirm the causal influence of phase on perception at the time the stimulus is effectively processed in the brain.
最近的证据表明,感知存在节律调制:刺激前的θ(4-8 Hz)和α(8-13 Hz)频段的脑电(EEG)相位与目标检测的波动直接相关。事实上,脑电相位直接反映了皮质兴奋性:它充当了神经元水平信息流的门控机制。因此,调节感知的关键相位应该是在刺激实际处理时大脑中存在的相位。然而,大多数先前的研究报告称,相位调制在目标出现前 100 毫秒或更长时间达到峰值。为了解释这种差异,我们首先使用模拟表明,自发振荡信号受到目标诱发的 ERP 和信号滤波(例如,小波)的污染可能导致明显的相位调制峰值向更早的潜伏期转移,潜在地达到刺激前阶段。然后,我们提出了一种基于线性系统分析的范式,可以揭示持续 EEG 相位影响感知的真实潜伏期。在测量了脉冲响应函数之后,我们使用它来重建(而不是记录)人类观察者在白噪声序列期间的大脑活动。然后,我们可以在这些序列中呈现目标,并可靠地估计这些目标周围的 EEG 相位,而不受目标诱发反应的影响。我们发现,在这些重建的信号中,对于感知重要的相位是目标出现后约 75 毫秒时额枕区约 6 Hz 的背景振荡。这些结果证实了在大脑有效处理刺激时,相位对感知的因果影响。