Suppr超能文献

Adenylate cyclase activity during phenotypic variation of Bordetella pertussis.

作者信息

Brownlie R M, Coote J G, Parton R

出版信息

J Gen Microbiol. 1985 Jan;131(1):27-38. doi: 10.1099/00221287-131-1-27.

Abstract

During MgSO4-induced modulation of Bordetella pertussis, adenylate cyclase activity, histamine-sensitizing activity (HSA) and the major cell-envelope polypeptides with Mr 28000 and 30000 (X polypeptides) were lost synchronously at a rate which could be accounted for by a simple growth-dilution effect. MgSO4 and other compounds which induced the above phenotypic change caused little inhibition of adenylate cyclase activity. Nicotinic acid was the sole exception and at 4.1 mM-caused 60% inhibition of activity. Lysates of modulated cells, mixed with lysates of unmodulated cells, had no effect on either adenylate cyclase activity or HSA. Protein synthesis was a prerequisite for MgSO4-induced modulation and also for the reversal of this process. Exogenous cAMP and dibutyryl cAMP (5 mM) had no counteracting effect on MgSO4- or nicotinic acid-induced modulation. The concentration of MgSO4 required to induce loss of the X polypeptides (10 to 11 mM) was not altered by promoting adenylate cyclase activity by including an activator in the growth medium. In one culture containing 10 mM-MgSO4 and activator, partial loss of the X polypeptides occurred and yet the extracellular cAMP concentration was twice that of cultures without activator and where full expression of the X polypeptides occurred. [3H]cAMP-binding activity was detected in cell extracts of several strains of B. pertussis, but antiserum against purified Escherichia coli catabolite repressor protein gave no reaction with B. pertussis cell extracts. Respiration rates with amino acids were similar for modulated and unmodulated variants and an avirulent strain of B. pertussis. These results are discussed in relation to a possible causal role for adenylate cyclase in modulation of B. pertussis.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验