Awais Muhammad, Wajid Aftab, Bashir Muhammad Usman, Habib-Ur-Rahman Muhammad, Raza Muhammad Aown Sammar, Ahmad Ashfaq, Saleem Muhammad Farrukh, Hammad Hafiz Mohkum, Mubeen Muhammad, Saeed Umer, Arshad Muhammad Naveed, Fahad Shah, Nasim Wajid
Department of Agronomy, University College of Agriculture and Environmental Sciences, The Islamia University, Bahawalpur, Pakistan.
Agro-climatology Laboratory, Department of Agronomy, University of Agriculture Faisalabad, Faisalabad, Pakistan.
Environ Sci Pollut Res Int. 2017 Jul;24(21):17511-17525. doi: 10.1007/s11356-017-9308-7. Epub 2017 Jun 8.
The combination of nitrogen and plant population expresses the spatial distribution of crop plants. The spatial distribution influences canopy structure and development, radiation capture, accumulated intercepted radiation (Sa), radiation use efficiency (RUE), and subsequently dry matter production. We hypothesized that the sunflower crop at higher plant populations and nitrogen (N) rates would achieve early canopy cover, capture more radiant energy, utilize radiation energy more efficiently, and ultimately increase economic yield. To investigate the above hypothesis, we examined the influences of leaf area index (LAI) at different plant populations (83,333, 66,666, and 55,555 plants ha) and N rates (90, 120, and 150 kg ha) on radiation interception (Fi), photosynthetically active radiation (PAR) accumulation (Sa), total dry matter (TDM), achene yield (AY), and RUE of sunflower. The experimental work was conducted during 2012 and 2013 on sandy loam soil in Punjab, Pakistan. The sunflower crop captured more than 96% of incident radiant energy (mean of all treatments), 98% with a higher plant population (83,333 plants ha), and 97% with higher N application (150 kg ha) at the fifth harvest (60 days after sowing) during both study years. The plant population of 83,333 plants ha with 150 kg N ha ominously promoted crop, RUE, and finally productivity of sunflower (AY and TDM). Sunflower canopy (LAI) showed a very close and strong association with Fi (R = 0.99 in both years), PAR (R = 0.74 and 0.79 in 2012 and 2013, respectively), TDM (R = 0.97 in 2012 and 0.91 in 2013), AY (R = 0.95 in both years), RUE for TDM (RUE) (R = 0.63 and 0.71 in 2012 and 2013, respectively), and RUE for AY (RUE) (R = 0.88 and 0.87 in 2012 and 2013, respectively). Similarly, AY (R = 0.73 in 2012 and 0.79 in 2013) and TDM (R = 0.75 in 2012 and 0.84 in 2013) indicated significant dependence on PAR accumulation of sunflower. High temperature during the flowering stage in 2013 shortened the crop maturity duration, which reduced the LAI, leaf area duration (LAD), crop growth rate (CGR), TDM, AY, Fi, Sa, and RUE of sunflower. Our results clearly revealed that RUE was enhanced as plant population and N application rates were increased and biomass assimilation in semi-arid environments varied with radiation capture capacity of sunflower.
氮素与种植密度的组合体现了作物植株的空间分布。这种空间分布会影响冠层结构与发育、辐射捕获、累积截获辐射量(Sa)、辐射利用效率(RUE),进而影响干物质产量。我们假设,较高种植密度和施氮量(N)的向日葵作物能够较早实现冠层覆盖,捕获更多辐射能,更高效地利用辐射能,并最终提高经济产量。为了验证上述假设,我们研究了不同种植密度(83,333、66,666和55,555株/公顷)和施氮量(90、120和150千克/公顷)下的叶面积指数(LAI)对向日葵辐射截获量(Fi)、光合有效辐射(PAR)积累量(Sa)、总干物质(TDM)、瘦果产量(AY)和辐射利用效率(RUE)的影响。2012年和2013年在巴基斯坦旁遮普省的砂壤土上开展了此项实验研究。在两个研究年份的第五次收获期(播种后60天),向日葵作物截获了超过96%的入射辐射能(所有处理的平均值),种植密度较高(83,333株/公顷)时截获率为98%,施氮量较高(150千克/公顷)时截获率为97%。种植密度为83,333株/公顷且施氮量为150千克/公顷时,显著促进了向日葵作物的生长、辐射利用效率,最终提高了向日葵的生产力(瘦果产量和总干物质)。向日葵冠层(叶面积指数)与辐射截获量(Fi)(两年均为R = 0.99)、光合有效辐射(PAR)(2012年和2013年分别为R = 0.74和0.79)、总干物质(TDM)(2012年为R = 0.97,2013年为R = 0.91)、瘦果产量(AY)(两年均为R = 0.95)、总干物质辐射利用效率(RUE)(2012年和2013年分别为R = 0.63和0.71)以及瘦果产量辐射利用效率(RUE)(2012年和2013年分别为R = 0.88和0.87)均呈现出非常紧密且强烈的相关性。同样,瘦果产量(2012年为R = 0.73,2013年为R = 0.79)和总干物质(2012年为R = 0.75,2013年为R = 0.84)表明对向日葵光合有效辐射积累量存在显著依赖性。2013年开花期的高温缩短了作物成熟所需时间,进而降低了向日葵的叶面积指数、叶面积持续时间(LAD)、作物生长速率(CGR)、总干物质、瘦果产量、辐射截获量、光合有效辐射积累量和辐射利用效率。我们的研究结果清楚地表明,随着种植密度和施氮量的增加,辐射利用效率得到提高,并且半干旱环境中的生物量同化作用随向日葵辐射捕获能力的变化而变化。