College of Medical Laboratory Science and Technology, Harbin Medical University, Daqing, China.
Central Laboratory, Harbin Medical University, Daqing, China.
J Mol Med (Berl). 2017 Sep;95(9):977-993. doi: 10.1007/s00109-017-1541-5. Epub 2017 Jun 7.
Abnormal pulmonary arterial smooth muscle cells (PASMCs) proliferation is an important pathological process in hypoxic pulmonary arterial hypertension. Mitochondrial dynamics and quality control have a central role in the maintenance of the cell proliferation-apoptosis balance. However, the molecular mechanism is still unknown. We used hypoxic animal models, cell biology, and molecular biology to determine the effect of mitofusin 1 (Mfn1) on hypoxia-mediated PASMCs mitochondrial homeostasis. We found that Mfn1 expression was increased in hypoxia, which was crucial for hypoxia-induced mitochondrial dysfunction and smooth muscle cell proliferation as well as hypoxia-stimulated cell-cycle transition from the G/G phase to S phase. Subsequently, we studied the role of microRNAs in mitochondrial function associated with PASMC proliferation under hypoxic conditions. The promotive effect of Mfn1 on pulmonary vascular remodeling was alleviated in the presence of miR-125a agomir, and miR-125a antagomir mimicked the hypoxic damage effects to mitochondrial homeostasis. Moreover, in vivo and in vitro treatment with miR-125a agomir protected the pulmonary vessels from mitochondrial dysfunction and abnormal remodeling. In the present study, we determined that mitochondrial homeostasis, particularly Mfn1, played an important role in PASMCs proliferation. MiR-125a, an important underlying factor, which inhibited Mfn1 expression and decreased PASMCs disordered growth during hypoxia. These results provide a theoretical basis for the prevention and treatment of pulmonary vascular remodeling.
Hypoxia leads to upregulation of mitofusin 1 (Mfn1) both in vivo and in vitro. Mfn1 is involved in hypoxia-induced PASMCs proliferation. Mfn1-mediated mitochondrial homeostasis is regulated by miR-125a. MiR-125a plays a role in PASMCs oxidative phosphorylation and glycolysis.
异常肺动脉平滑肌细胞(PASMCs)增殖是低氧性肺动脉高压的一个重要病理过程。线粒体动力学和质量控制在维持细胞增殖-凋亡平衡中起着核心作用。然而,其分子机制尚不清楚。我们使用低氧动物模型、细胞生物学和分子生物学来确定融合蛋白 1(Mfn1)对低氧介导的 PASMCs 线粒体动态平衡的影响。我们发现,Mfn1 在低氧条件下表达增加,这对于低氧诱导的线粒体功能障碍和平滑肌细胞增殖以及低氧刺激细胞周期从 G1/G0 期向 S 期的转变至关重要。随后,我们研究了 microRNAs 在低氧条件下与 PASMC 增殖相关的线粒体功能中的作用。在存在 miR-125a agomir 的情况下,Mfn1 对肺血管重构的促进作用减轻,而 miR-125a antagomir 模拟了低氧对线粒体动态平衡的损伤作用。此外,体内和体外用 miR-125a agomir 处理可保护肺血管免受线粒体功能障碍和异常重构的影响。在本研究中,我们确定线粒体动态平衡,特别是 Mfn1,在 PASMCs 增殖中起重要作用。miR-125a 是一种重要的潜在因子,它抑制 Mfn1 的表达,并在低氧条件下降低 PASMCs 的无序生长。这些结果为肺血管重构的防治提供了理论依据。
低氧在体内和体外均导致融合蛋白 1(Mfn1)上调。Mfn1 参与低氧诱导的 PASMCs 增殖。Mfn1 介导的线粒体动态平衡受 miR-125a 调节。miR-125a 在 PASMCs 的氧化磷酸化和糖酵解中发挥作用。