Suppr超能文献

固体氩中 fcc 到 hcp 相转变的机制。

Mechanism of the fcc-to-hcp phase transformation in solid Ar.

机构信息

Department of Materials Science and Engineering, University of California, Davis, California 95616, USA.

Department of Geosciences, Stony Brook University, Stony Brook, New York 11794, USA.

出版信息

J Chem Phys. 2017 Jun 7;146(21):214502. doi: 10.1063/1.4983167.

Abstract

We present an atomistic description of the fcc-to-hcp transformation mechanism in solid argon (Ar) obtained from transition path sampling molecular dynamics simulation. The phase transition pathways collected during the sampling for an 8000-particle system reveal three transition types according to the lattice deformation and relaxation details. In all three transition types, we see a critical accumulation of defects and uniform growth of a less ordered transition state, followed by a homogeneous growth of an ordered phase. Stacking disorder is discussed to describe the transition process and the cooperative motions of atoms in {111} planes. We investigate nucleation with a larger system: in a system of 18 000 particles, the collective movements of atoms required for this transition are facilitated by the formation and growth of stacking faults. However, the enthalpy barrier is still far beyond the thermal fluctuation. The high barrier explains previous experimental observations of the inaccessibility of the bulk transition at low pressure and its sluggishness even at extremely high pressure. The transition mechanism in bulk Ar is different from Ar nanoclusters as the orthorhombic intermediate structure proposed for the latter is not observed in any of our simulations.

摘要

我们提出了一种通过过渡路径采样分子动力学模拟获得的固态氩(Ar)从面心立方(fcc)到密排六方(hcp)转变机制的原子描述。在对 8000 个粒子系统进行采样时收集的相变途径根据晶格变形和弛豫细节显示了三种转变类型。在所有三种转变类型中,我们都看到了缺陷的临界积累和无序程度较低的转变态的均匀生长,随后是有序相的均匀生长。我们通过讨论堆垛无序来描述转变过程和原子在 {111} 面上的协同运动。我们用更大的系统来研究成核:在一个 18000 个粒子的系统中,形成和生长堆垛层错有助于这种转变所需的原子集体运动。然而,焓垒仍然远远超出了热涨落。这个高的势垒解释了先前实验观察到的在低压下难以实现体相转变及其在极高压力下的缓慢转变的原因。在 bulk Ar 中的转变机制与 Ar 纳米团簇不同,因为我们的模拟中没有观察到后者提出的正交中间结构。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验