Suppr超能文献

啁啾三维光子晶体中的彩虹捕获。

Rainbow trapping in a chirped three-dimensional photonic crystal.

机构信息

Nanophotonics Research Laboratory, Department of Electrical and Electronics Engineering, TOBB University of Economics and Technology, Ankara, 06560, Turkey.

DONLL, Departament de Física, Universitat Politècnica de Catalunya (UPC), Edifici Gaia, Rambla Sant Nebridi 22, 08222, Terrassa, Spain.

出版信息

Sci Rep. 2017 Jun 8;7(1):3046. doi: 10.1038/s41598-017-03454-w.

Abstract

Light localization and intensity enhancement in a woodpile layer-by-layer photonic crystal, whose interlayer distance along the light propagation direction is gradually varied, has been theoretically predicted and experimentally demonstrated. The phenomenon is shown to be related to the progressive slowing down and stopping of the incident wave, as a result of the gradual variation of the local dispersion. The light localization is chromatically resolved, since every frequency component is stopped and reflected back at different positions along the crystal. It has been further discussed that the peculiar relation between the stopping position and the wave vector distribution can substantially increase the enhancement factor to more than two orders of magnitude. Compared to previously reported one- and two-dimensional photonic crystal configurations, the proposed scheme has the advantage of reducing the propagation losses by providing a three-dimensional photonic bandgap confinement in all directions. The slowing down and localization of waves inside photonic media can be exploited in optics and generally in wave dynamics, in many applications that require enhanced interaction of light and matter.

摘要

在层状木堆光子晶体中,沿光传播方向的层间距离逐渐变化,理论上预测并实验证明了光的局域化和强度增强。这种现象与入射波的逐渐减速和停止有关,这是由于局部色散的逐渐变化所致。光局域化是由颜色分辨的,因为每个频率分量都在晶体的不同位置停止并反射回来。进一步讨论表明,停止位置和波矢分布之间的特殊关系可以将增强因子提高到两个数量级以上。与之前报道的一维和二维光子晶体结构相比,所提出的方案通过在所有方向上提供三维光子带隙限制,降低了传播损耗。在光子介质中波的减速和局域化可以在光学和一般的波动力学中得到利用,在许多需要增强光与物质相互作用的应用中。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f971/5465211/163548af66c8/41598_2017_3454_Fig1_HTML.jpg

相似文献

1
Rainbow trapping in a chirped three-dimensional photonic crystal.
Sci Rep. 2017 Jun 8;7(1):3046. doi: 10.1038/s41598-017-03454-w.
2
4
Slowing designer surface plasmons in a surface-wave photonic crystal.
Appl Opt. 2018 Sep 1;57(25):7089-7093. doi: 10.1364/AO.57.007089.
6
Three-dimensional control of light in a two-dimensional photonic crystal slab.
Nature. 2000 Oct 26;407(6807):983-6. doi: 10.1038/35039583.
7
Trapping and emission of photons by a single defect in a photonic bandgap structure.
Nature. 2000 Oct 5;407(6804):608-10. doi: 10.1038/35036532.
10
Engineering inverse woodpile and woodpile photonic crystal solar cells for light trapping.
Nanotechnology. 2016 Jun 3;27(22):225404. doi: 10.1088/0957-4484/27/22/225404. Epub 2016 Apr 25.

引用本文的文献

1
Optically-Thin Broadband Graphene-Membrane Photodetector.
Nanomaterials (Basel). 2020 Feb 25;10(3):407. doi: 10.3390/nano10030407.

本文引用的文献

1
Truly trapped rainbow by utilizing nonreciprocal waveguides.
Sci Rep. 2016 Jul 25;6:30206. doi: 10.1038/srep30206.
3
Realization of "trapped rainbow" in 1D slab waveguide with surface dispersion engineering.
Opt Express. 2015 Mar 9;23(5):6326-35. doi: 10.1364/OE.23.006326.
4
Slow-light-enhanced gain in active photonic crystal waveguides.
Nat Commun. 2014 Sep 30;5:5039. doi: 10.1038/ncomms6039.
5
Rainbow trapping in hyperbolic metamaterial waveguide.
Sci Rep. 2013;3:1249. doi: 10.1038/srep01249. Epub 2013 Feb 13.
6
Revealing the truth about 'trapped rainbow' storage of light in metamaterials.
Sci Rep. 2012;2:583. doi: 10.1038/srep00583. Epub 2012 Aug 16.
7
Plasmonic rainbow trapping structures for light localization and spectrum splitting.
Phys Rev Lett. 2011 Nov 11;107(20):207401. doi: 10.1103/PhysRevLett.107.207401. Epub 2011 Nov 8.
8
Experimental verification of the rainbow trapping effect in adiabatic plasmonic gratings.
Proc Natl Acad Sci U S A. 2011 Mar 29;108(13):5169-73. doi: 10.1073/pnas.1014963108. Epub 2011 Mar 14.
9
Loss engineered slow light waveguides.
Opt Express. 2010 Dec 20;18(26):27627-38. doi: 10.1364/OE.18.027627.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验