Yang Rui, Zhu Wenkan, Li Jingjing
Opt Express. 2015 Mar 9;23(5):6326-35. doi: 10.1364/OE.23.006326.
We present a design of a one dimensional dielectric waveguide that can trap a broadband light pulse with different frequency component stored at different positions, effectively forming a "trapped rainbow" [Nature 450, 397 (2007)]. The spectrum of the rainbow covers the whole visible range. To do this, we first show that the dispersion of a SiO(2) waveguide with a Si grating placed on top can be engineered by the design parameter of the grating. Specifically, guided modes with zero group velocity(frozen modes) can be realized. Negative Goos-Hänchen shift along the surface of the grating is responsible for such a dispersion control. The frequency of the frozen mode is tuned by changing the lateral feature parameters (period and duty cycle) of the grating. By tuning the grating feature point by point along the waveguide, a light pulse can be trapped with different frequency components frozen at different positions, so that a "rainbow" is formed. The device is expected to have extremely low ohmic loss because only dielectric materials are used. A planar geometry also promises much reduced fabrication difficulty.
我们展示了一种一维介质波导的设计,它能够捕获一个宽带光脉冲,该脉冲具有存储在不同位置的不同频率成分,从而有效地形成一个“捕获彩虹”[《自然》450, 397 (2007)]。彩虹的光谱覆盖了整个可见光范围。为此,我们首先表明,顶部放置有硅光栅的二氧化硅波导的色散可以通过光栅的设计参数来调控。具体而言,可以实现具有零群速度的导模(冻结模)。沿着光栅表面的负古斯 - 汉欣位移负责这种色散控制。通过改变光栅的横向特征参数(周期和占空比)来调冻结模的频率。沿着波导逐点调整光栅特征,一个光脉冲就可以被捕获,不同频率成分在不同位置被冻结,从而形成一个“彩虹”。由于仅使用了介电材料,预计该器件具有极低的欧姆损耗。平面几何结构也意味着制造难度大幅降低。