Suppr超能文献

利用人类多能干细胞和基因编辑技术治疗视网膜变性的潜力。

Harnessing the Potential of Human Pluripotent Stem Cells and Gene Editing for the Treatment of Retinal Degeneration.

作者信息

Ovando-Roche Patrick, Georgiadis Anastasios, Smith Alexander J, Pearson Rachael A, Ali Robin R

机构信息

Department of Genetics, UCL Institute of Ophthalmology, 11-43 Bath Street, London, EC1V 9EL UK.

出版信息

Curr Stem Cell Rep. 2017;3(2):112-123. doi: 10.1007/s40778-017-0078-4. Epub 2017 Apr 18.

Abstract

PURPOSE OF REVIEW

A major cause of visual disorders is dysfunction and/or loss of the light-sensitive cells of the retina, the photoreceptors. To develop better treatments for patients, we need to understand how inherited retinal disease mutations result in the dysfunction of photoreceptors. New advances in the field of stem cell and gene editing research offer novel ways to model retinal dystrophies in vitro and present opportunities to translate basic biological insights into therapies. This brief review will discuss some of the issues that should be taken into account when carrying out disease modelling and gene editing of retinal cells. We will discuss (i) the use of human induced pluripotent stem cells (iPSCs) for disease modelling and cell therapy; (ii) the importance of using isogenic iPSC lines as controls; (iii) CRISPR/Cas9 gene editing of iPSCs; and (iv) in vivo gene editing using AAV vectors.

RECENT FINDINGS

Ground-breaking advances in differentiation of iPSCs into retinal organoids and methods to derive mature light sensitive photoreceptors from iPSCs. Furthermore, single AAV systems for in vivo gene editing have been developed which makes retinal in vivo gene editing therapy a real prospect.

SUMMARY

Genome editing is becoming a valuable tool for disease modelling and in vivo gene editing in the retina.

摘要

综述目的

视觉障碍的一个主要原因是视网膜的感光细胞(光感受器)功能障碍和/或丧失。为了给患者开发更好的治疗方法,我们需要了解遗传性视网膜疾病突变如何导致光感受器功能障碍。干细胞和基因编辑研究领域的新进展提供了在体外模拟视网膜营养不良的新方法,并为将基本生物学见解转化为治疗方法提供了机会。本简要综述将讨论在进行视网膜细胞疾病建模和基因编辑时应考虑的一些问题。我们将讨论:(i)使用人类诱导多能干细胞(iPSC)进行疾病建模和细胞治疗;(ii)使用同基因iPSC系作为对照的重要性;(iii)iPSC的CRISPR/Cas9基因编辑;以及(iv)使用腺相关病毒(AAV)载体进行体内基因编辑。

最新发现

在将iPSC分化为视网膜类器官以及从iPSC衍生成熟感光光感受器的方法方面取得了突破性进展。此外,已经开发出用于体内基因编辑的单AAV系统,这使得视网膜体内基因编辑治疗成为一个切实可行的前景。

总结

基因组编辑正成为视网膜疾病建模和体内基因编辑的一种有价值的工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d431/5445184/677044cfaabe/40778_2017_78_Fig1_HTML.jpg

相似文献

1
Harnessing the Potential of Human Pluripotent Stem Cells and Gene Editing for the Treatment of Retinal Degeneration.
Curr Stem Cell Rep. 2017;3(2):112-123. doi: 10.1007/s40778-017-0078-4. Epub 2017 Apr 18.
5
Using CRISPR-Cas9 to Generate Gene-Corrected Autologous iPSCs for the Treatment of Inherited Retinal Degeneration.
Mol Ther. 2017 Sep 6;25(9):1999-2013. doi: 10.1016/j.ymthe.2017.05.015. Epub 2017 Jun 12.
6
CRISPR-Cas9 genome engineering: Treating inherited retinal degeneration.
Prog Retin Eye Res. 2018 Jul;65:28-49. doi: 10.1016/j.preteyeres.2018.03.003. Epub 2018 Mar 22.
10

引用本文的文献

1
Nanotherapy for Neural Retinal Regeneration.
Adv Sci (Weinh). 2025 Jun;12(24):e2409854. doi: 10.1002/advs.202409854. Epub 2025 Jan 14.
5
Sensory Transduction in Photoreceptors and Olfactory Sensory Neurons: Common Features and Distinct Characteristics.
Front Cell Neurosci. 2021 Oct 8;15:761416. doi: 10.3389/fncel.2021.761416. eCollection 2021.
7
Biomaterial-guided stem cell organoid engineering for modeling development and diseases.
Acta Biomater. 2021 Sep 15;132:23-36. doi: 10.1016/j.actbio.2021.01.026. Epub 2021 Jan 22.
10
Stem Cells in Cardiovascular Medicine: Historical Overview and Future Prospects.
Cells. 2019 Nov 27;8(12):1530. doi: 10.3390/cells8121530.

本文引用的文献

1
Genomic Disruption of VEGF-A Expression in Human Retinal Pigment Epithelial Cells Using CRISPR-Cas9 Endonuclease.
Invest Ophthalmol Vis Sci. 2016 Oct 1;57(13):5490-5497. doi: 10.1167/iovs.16-20296.
2
Successful Transplantation of Retinal Pigment Epithelial Cells from MHC Homozygote iPSCs in MHC-Matched Models.
Stem Cell Reports. 2016 Oct 11;7(4):635-648. doi: 10.1016/j.stemcr.2016.08.010. Epub 2016 Sep 15.
3
Stargardt disease: clinical features, molecular genetics, animal models and therapeutic options.
Br J Ophthalmol. 2017 Jan;101(1):25-30. doi: 10.1136/bjophthalmol-2016-308823. Epub 2016 Aug 4.
5
Dishing out mini-brains: Current progress and future prospects in brain organoid research.
Dev Biol. 2016 Dec 15;420(2):199-209. doi: 10.1016/j.ydbio.2016.06.037. Epub 2016 Jul 9.
6
AAV-Mediated CRISPR/Cas Gene Editing of Retinal Cells In Vivo.
Invest Ophthalmol Vis Sci. 2016 Jun 1;57(7):3470-6. doi: 10.1167/iovs.16-19316.
7
Immune modulation by MANF promotes tissue repair and regenerative success in the retina.
Science. 2016 Jul 1;353(6294):aaf3646. doi: 10.1126/science.aaf3646.
8
Modeling Development and Disease with Organoids.
Cell. 2016 Jun 16;165(7):1586-1597. doi: 10.1016/j.cell.2016.05.082.
9
Retinas in a Dish Peek into Inherited Retinal Degeneration.
Cell Stem Cell. 2016 Jun 2;18(6):688-689. doi: 10.1016/j.stem.2016.05.021.
10
Identification and Correction of Mechanisms Underlying Inherited Blindness in Human iPSC-Derived Optic Cups.
Cell Stem Cell. 2016 Jun 2;18(6):769-781. doi: 10.1016/j.stem.2016.03.021. Epub 2016 Apr 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验