Buttenschön Andreas, Hillen Thomas, Gerisch Alf, Painter Kevin J
Department of Mathematical and Statistical Sciences, Centre for Mathematical Biology, University of Alberta, Edmonton, AB, T6G 2G1, Canada.
Fachbereich Mathematik, Technische Universität Darmstadt, Dolivostr. 15, 64293, Darmstadt, Germany.
J Math Biol. 2018 Jan;76(1-2):429-456. doi: 10.1007/s00285-017-1144-3. Epub 2017 Jun 8.
Cellular adhesion provides one of the fundamental forms of biological interaction between cells and their surroundings, yet the continuum modelling of cellular adhesion has remained mathematically challenging. In 2006, Armstrong et al. proposed a mathematical model in the form of an integro-partial differential equation. Although successful in applications, a derivation from an underlying stochastic random walk has remained elusive. In this work we develop a framework by which non-local models can be derived from a space-jump process. We show how the notions of motility and a cell polarization vector can be naturally included. With this derivation we are able to include microscopic biological properties into the model. We show that particular choices yield the original Armstrong model, while others lead to more general models, including a doubly non-local adhesion model and non-local chemotaxis models. Finally, we use random walk simulations to confirm that the corresponding continuum model represents the mean field behaviour of the stochastic random walk.
细胞黏附提供了细胞与其周围环境之间生物相互作用的一种基本形式,然而细胞黏附的连续介质建模在数学上仍然具有挑战性。2006年,阿姆斯特朗等人提出了一个积分-偏微分方程形式的数学模型。尽管该模型在应用中取得了成功,但其从潜在的随机游走推导而来的过程仍然难以捉摸。在这项工作中,我们开发了一个框架,通过该框架可以从空间跳跃过程推导出非局部模型。我们展示了如何自然地纳入运动性和细胞极化向量的概念。通过这种推导,我们能够将微观生物学特性纳入模型。我们表明,特定的选择会产生原始的阿姆斯特朗模型,而其他选择则会导致更一般的模型,包括双重非局部黏附模型和非局部趋化模型。最后,我们使用随机游走模拟来确认相应的连续介质模型代表了随机游走的平均场行为。