Suppr超能文献

细菌即将发生表型转换的动态预测因子。

Dynamical predictors of an imminent phenotypic switch in bacteria.

作者信息

Wang Huijing, Ray J Christian J

机构信息

Center for Computational Biology, University of Kansas, 2030 Becker Drive, Lawrence, KS 66047, United States of America.

出版信息

Phys Biol. 2017 Jun 29;14(4):045007. doi: 10.1088/1478-3975/aa7870.

Abstract

Single cells can stochastically switch across thresholds imposed by regulatory networks. Such thresholds can act as a tipping point, drastically changing global phenotypic states. In ecology and economics, imminent transitions across such tipping points can be predicted using dynamical early warning indicators. A typical example is 'flickering' of a fast variable, predicting a longer-lasting switch from a low to a high state or vice versa. Considering the different timescales between metabolite and protein fluctuations in bacteria, we hypothesized that metabolic early warning indicators predict imminent transitions across a network threshold caused by enzyme saturation. We used stochastic simulations to determine if flickering predicts phenotypic transitions, accounting for a variety of molecular physiological parameters, including enzyme affinity, burstiness of enzyme gene expression, homeostatic feedback, and rates of metabolic precursor influx. In most cases, we found that metabolic flickering rates are robustly peaked near the enzyme saturation threshold. The degree of fluctuation was amplified by product inhibition of the enzyme. We conclude that sensitivity to flickering in fast variables may be a possible natural or synthetic strategy to prepare physiological states for an imminent transition.

摘要

单细胞能够随机跨越调控网络设定的阈值。此类阈值可充当一个临界点,极大地改变整体表型状态。在生态学和经济学中,可利用动态早期预警指标预测跨越此类临界点的即将发生的转变。一个典型例子是快速变量的“闪烁”,它预测从低状态到高状态或反之的持续时间更长的转变。考虑到细菌中代谢物和蛋白质波动之间的不同时间尺度,我们推测代谢早期预警指标可预测由酶饱和导致的跨越网络阈值的即将发生的转变。我们使用随机模拟来确定闪烁是否能预测表型转变,同时考虑了各种分子生理参数,包括酶亲和力、酶基因表达的爆发性、稳态反馈以及代谢前体流入速率。在大多数情况下,我们发现代谢闪烁速率在酶饱和阈值附近强劲达到峰值。酶的产物抑制会放大波动程度。我们得出结论,对快速变量中闪烁的敏感性可能是一种为即将发生的转变准备生理状态的自然或合成策略。

相似文献

1
Dynamical predictors of an imminent phenotypic switch in bacteria.
Phys Biol. 2017 Jun 29;14(4):045007. doi: 10.1088/1478-3975/aa7870.
2
Threshold-dominated regulation hides genetic variation in gene expression networks.
BMC Syst Biol. 2007 Dec 6;1:57. doi: 10.1186/1752-0509-1-57.
3
Predicting catastrophic shifts.
J Theor Biol. 2016 May 21;397:128-34. doi: 10.1016/j.jtbi.2016.02.033. Epub 2016 Mar 9.
4
Noise-induced dynamics in the mixed-feedback-loop network motif.
Phys Rev E Stat Nonlin Soft Matter Phys. 2008 Jan;77(1 Pt 1):011903. doi: 10.1103/PhysRevE.77.011903. Epub 2008 Jan 7.
5
Robustness of variance and autocorrelation as indicators of critical slowing down.
Ecology. 2012 Feb;93(2):264-71. doi: 10.1890/11-0889.1.
6
Lineage space and the propensity of bacterial cells to undergo growth transitions.
PLoS Comput Biol. 2018 Aug 22;14(8):e1006380. doi: 10.1371/journal.pcbi.1006380. eCollection 2018 Aug.
7
Interplay between stochasticity and negative feedback leads to pulsed dynamics and distinct gene activity patterns.
Phys Rev E Stat Nonlin Soft Matter Phys. 2015 Aug;92(2):022711. doi: 10.1103/PhysRevE.92.022711. Epub 2015 Aug 14.
10
Linking fast and slow positive feedback loops creates an optimal bistable switch in cell signaling.
Phys Rev E Stat Nonlin Soft Matter Phys. 2007 Sep;76(3 Pt 1):031924. doi: 10.1103/PhysRevE.76.031924. Epub 2007 Sep 27.

本文引用的文献

1
Criticality and Adaptivity in Enzymatic Networks.
Biophys J. 2016 Sep 6;111(5):1078-87. doi: 10.1016/j.bpj.2016.07.036.
2
Enzyme Sequestration as a Tuning Point in Controlling Response Dynamics of Signalling Networks.
PLoS Comput Biol. 2016 May 10;12(5):e1004918. doi: 10.1371/journal.pcbi.1004918. eCollection 2016 May.
3
Cellular Growth Arrest and Persistence from Enzyme Saturation.
PLoS Comput Biol. 2016 Mar 24;12(3):e1004825. doi: 10.1371/journal.pcbi.1004825. eCollection 2016 Mar.
5
Ultrasensitivity part I: Michaelian responses and zero-order ultrasensitivity.
Trends Biochem Sci. 2014 Oct;39(10):496-503. doi: 10.1016/j.tibs.2014.08.003. Epub 2014 Sep 18.
6
Flickering gives early warning signals of a critical transition to a eutrophic lake state.
Nature. 2012 Dec 20;492(7429):419-22. doi: 10.1038/nature11655. Epub 2012 Nov 18.
7
How cancer metabolism is tuned for proliferation and vulnerable to disruption.
Nature. 2012 Nov 15;491(7424):364-73. doi: 10.1038/nature11706.
8
Anticipating critical transitions.
Science. 2012 Oct 19;338(6105):344-8. doi: 10.1126/science.1225244.
9
Interplay of gene expression noise and ultrasensitive dynamics affects bacterial operon organization.
PLoS Comput Biol. 2012;8(8):e1002672. doi: 10.1371/journal.pcbi.1002672. Epub 2012 Aug 30.
10
Methods for detecting early warnings of critical transitions in time series illustrated using simulated ecological data.
PLoS One. 2012;7(7):e41010. doi: 10.1371/journal.pone.0041010. Epub 2012 Jul 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验