Suppr超能文献

阈值主导的调控掩盖了基因表达网络中的遗传变异。

Threshold-dominated regulation hides genetic variation in gene expression networks.

作者信息

Gjuvsland Arne B, Plahte Erik, Omholt Stig W

机构信息

Department of Animal Science and Aquaculture, Norwegian University of Life Sciences, 1432 As, Norway.

出版信息

BMC Syst Biol. 2007 Dec 6;1:57. doi: 10.1186/1752-0509-1-57.

Abstract

BACKGROUND

In dynamical models with feedback and sigmoidal response functions, some or all variables have thresholds around which they regulate themselves or other variables. A mathematical analysis has shown that when the dose-response functions approach binary or on/off responses, any variable with an equilibrium value close to one of its thresholds is very robust to parameter perturbations of a homeostatic state. We denote this threshold robustness. To check the empirical relevance of this phenomenon with response function steepnesses ranging from a near on/off response down to Michaelis-Menten conditions, we have performed a simulation study to investigate the degree of threshold robustness in models for a three-gene system with one downstream gene, using several logical input gates, but excluding models with positive feedback to avoid multistationarity. Varying parameter values representing functional genetic variation, we have analysed the coefficient of variation (CV) of the gene product concentrations in the stable state for the regulating genes in absolute terms and compared to the CV for the unregulating downstream gene. The sigmoidal or binary dose-response functions in these models can be considered as phenomenological models of the aggregated effects on protein or mRNA expression rates of all cellular reactions involved in gene expression.

RESULTS

For all the models, threshold robustness increases with increasing response steepness. The CVs of the regulating genes are significantly smaller than for the unregulating gene, in particular for steep responses. The effect becomes less prominent as steepnesses approach Michaelis-Menten conditions. If the parameter perturbation shifts the equilibrium value too far away from threshold, the gene product is no longer an effective regulator and robustness is lost. Threshold robustness arises when a variable is an active regulator around its threshold, and this function is maintained by the feedback loop that the regulator necessarily takes part in and also is regulated by. In the present study all feedback loops are negative, and our results suggest that threshold robustness is maintained by negative feedback which necessarily exists in the homeostatic state.

CONCLUSION

Threshold robustness of a variable can be seen as its ability to maintain an active regulation around its threshold in a homeostatic state despite external perturbations. The feedback loop that the system necessarily possesses in this state, ensures that the robust variable is itself regulated and kept close to its threshold. Our results suggest that threshold regulation is a generic phenomenon in feedback-regulated networks with sigmoidal response functions, at least when there is no positive feedback. Threshold robustness in gene regulatory networks illustrates that hidden genetic variation can be explained by systemic properties of the genotype-phenotype map.

摘要

背景

在具有反馈和S型响应函数的动力学模型中,部分或所有变量具有阈值,它们围绕这些阈值调节自身或其他变量。数学分析表明,当剂量-反应函数接近二元或开/关响应时,任何平衡值接近其阈值之一的变量对稳态的参数扰动都具有很强的鲁棒性。我们将此称为阈值鲁棒性。为了检验这一现象在响应函数陡度范围从近乎开/关响应到米氏条件下的经验相关性,我们进行了一项模拟研究,以调查一个具有一个下游基因的三基因系统模型中的阈值鲁棒性程度,使用了几种逻辑输入门,但排除了具有正反馈的模型以避免多稳态。通过改变代表功能遗传变异的参数值,我们从绝对值角度分析了调节基因在稳定状态下基因产物浓度的变异系数(CV),并与未调节的下游基因的CV进行了比较。这些模型中的S型或二元剂量-反应函数可被视为对基因表达中所有细胞反应的蛋白质或mRNA表达率的综合影响的现象学模型。

结果

对于所有模型,阈值鲁棒性随着响应陡度的增加而增强。调节基因的CV显著小于未调节基因的CV,特别是对于陡峭的响应。随着陡度接近米氏条件,这种效应变得不那么明显。如果参数扰动使平衡值远离阈值太远,基因产物就不再是有效的调节因子,鲁棒性就会丧失。当一个变量在其阈值附近是一个活跃的调节因子时,就会出现阈值鲁棒性,并且这种功能由调节因子必然参与且受其调节的反馈回路维持。在本研究中,所有反馈回路都是负反馈,我们的结果表明阈值鲁棒性由稳态中必然存在的负反馈维持。

结论

一个变量的阈值鲁棒性可被视为其在稳态下尽管受到外部扰动仍能围绕其阈值维持活跃调节的能力。系统在这种状态下必然拥有的反馈回路确保了鲁棒变量自身受到调节并保持接近其阈值。我们的结果表明,阈值调节是具有S型响应函数的反馈调节网络中的一种普遍现象,至少在没有正反馈的情况下是如此。基因调控网络中的阈值鲁棒性表明,隐藏的遗传变异可以由基因型-表型图谱的系统特性来解释。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/779c/2238762/7358edec61a3/1752-0509-1-57-1.jpg

相似文献

1
Threshold-dominated regulation hides genetic variation in gene expression networks.
BMC Syst Biol. 2007 Dec 6;1:57. doi: 10.1186/1752-0509-1-57.
2
Nonlinear Dynamics in Gene Regulation Promote Robustness and Evolvability of Gene Expression Levels.
PLoS One. 2016 Apr 15;11(4):e0153295. doi: 10.1371/journal.pone.0153295. eCollection 2016.
3
Evolution of phenotypic fluctuation under host-parasite interactions.
PLoS Comput Biol. 2021 Nov 9;17(11):e1008694. doi: 10.1371/journal.pcbi.1008694. eCollection 2021 Nov.
4
Analysis of feedback loops and robustness in network evolution based on Boolean models.
BMC Bioinformatics. 2007 Nov 7;8:430. doi: 10.1186/1471-2105-8-430.
5
Inferring cell cycle feedback regulation from gene expression data.
J Biomed Inform. 2011 Aug;44(4):565-75. doi: 10.1016/j.jbi.2011.02.002. Epub 2011 Feb 16.
6
Analysis of gene regulatory network models with graded and binary transcriptional responses.
Biosystems. 2007 Sep-Oct;90(2):323-39. doi: 10.1016/j.biosystems.2006.09.036. Epub 2006 Sep 22.
7
Dynamics of the interlocked positive feedback loops explaining the robust epigenetic switching in Candida albicans.
J Theor Biol. 2009 May 7;258(1):71-88. doi: 10.1016/j.jtbi.2009.01.008. Epub 2009 Jan 24.
8
Proximity of intracellular regulatory networks to monotone systems.
IET Syst Biol. 2008 May;2(3):103-12. doi: 10.1049/iet-syb:20070036.

引用本文的文献

3
Resolving the Rules of Robustness and Resilience in Biology Across Scales.
Integr Comp Biol. 2022 Feb 5;61(6):2163-2179. doi: 10.1093/icb/icab183.
4
Control of Cell Identity by the Nuclear Receptor HNF4 in Organ Pathophysiology.
Cells. 2020 Sep 28;9(10):2185. doi: 10.3390/cells9102185.
5
Endoplasmic reticulum stress actively suppresses hepatic molecular identity in damaged liver.
Mol Syst Biol. 2020 May;16(5):e9156. doi: 10.15252/msb.20199156.
6
Changes in gene expression predictably shift and switch genetic interactions.
Nat Commun. 2019 Aug 29;10(1):3886. doi: 10.1038/s41467-019-11735-3.
8
Signal Peptidase Complex Subunit 1 and Hydroxyacyl-CoA Dehydrogenase Beta Subunit Are Suitable Reference Genes in Human Lungs.
ISRN Bioinform. 2011 Dec 28;2012:790452. doi: 10.5402/2012/790452. eCollection 2012.
9
Influence of modularity and regularity on disparity of atelostomata sea urchins.
Evol Bioinform Online. 2014 Jun 29;10:97-105. doi: 10.4137/EBO.S14457. eCollection 2014.

本文引用的文献

1
Towards a theory of biological robustness.
Mol Syst Biol. 2007;3:137. doi: 10.1038/msb4100179. Epub 2007 Sep 18.
2
Robustness and modular design of the Drosophila segment polarity network.
Mol Syst Biol. 2006;2:70. doi: 10.1038/msb4100111. Epub 2006 Dec 12.
3
Analysis of gene regulatory network models with graded and binary transcriptional responses.
Biosystems. 2007 Sep-Oct;90(2):323-39. doi: 10.1016/j.biosystems.2006.09.036. Epub 2006 Sep 22.
4
Circular causality.
Syst Biol (Stevenage). 2006 Jul;153(4):140-53. doi: 10.1049/ip-syb:20050101.
5
Robustness analysis of biochemical network models.
Syst Biol (Stevenage). 2006 May;153(3):96-104. doi: 10.1049/ip-syb:20050024.
7
Plasticity of the cis-regulatory input function of a gene.
PLoS Biol. 2006 Apr;4(4):e45. doi: 10.1371/journal.pbio.0040045. Epub 2006 Mar 28.
8
Nonlinear protein degradation and the function of genetic circuits.
Proc Natl Acad Sci U S A. 2005 Jul 5;102(27):9559-64. doi: 10.1073/pnas.0409553102. Epub 2005 Jun 22.
9
Transcriptional regulation by the numbers: applications.
Curr Opin Genet Dev. 2005 Apr;15(2):125-35. doi: 10.1016/j.gde.2005.02.006.
10
Transcriptional regulation by the numbers: models.
Curr Opin Genet Dev. 2005 Apr;15(2):116-24. doi: 10.1016/j.gde.2005.02.007.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验