Budday Dominik, Fonseca Rasmus, Leyendecker Sigrid, van den Bedem Henry
Chair of Applied Dynamics, University of Erlangen-Nuremberg, Erlangen, Germany.
Department of Molecular and Cellular Physiology, Stanford University, California, Menlo Park.
Proteins. 2017 Oct;85(10):1795-1807. doi: 10.1002/prot.25333. Epub 2017 Jul 12.
Proteins exist as conformational ensembles, exchanging between substates to perform their function. Advances in experimental techniques yield unprecedented access to structural snapshots of their conformational landscape. However, computationally modeling how proteins use collective motions to transition between substates is challenging owing to a rugged landscape and large energy barriers. Here, we present a new, robotics-inspired motion planning procedure called dCC-RRT that navigates the rugged landscape between substates by introducing dynamic, interatomic constraints to modulate frustration. The constraints balance non-native contacts and flexibility, and instantaneously redirect the motion towards sterically favorable conformations. On a test set of eight proteins determined in two conformations separated by, on average, 7.5 Å root mean square deviation (RMSD), our pathways reduced the Cα atom RMSD to the goal conformation by 78%, outperforming peer methods. We then applied dCC-RRT to examine how collective, small-scale motions of four side-chains in the active site of cyclophilin A propagate through the protein. dCC-RRT uncovered a spatially contiguous network of residues linked by steric interactions and collective motion connecting the active site to a recently proposed, non-canonical capsid binding site 25 Å away, rationalizing NMR and multi-temperature crystallography experiments. In all, dCC-RRT can reveal detailed, all-atom molecular mechanisms for small and large amplitude motions. Source code and binaries are freely available at https://github.com/ExcitedStates/KGS/.
蛋白质以构象集合的形式存在,在亚状态之间交换以执行其功能。实验技术的进步使人们能够以前所未有的方式获取其构象景观的结构快照。然而,由于崎岖的景观和巨大的能量障碍,通过计算模拟蛋白质如何利用集体运动在亚状态之间转换具有挑战性。在这里,我们提出了一种受机器人启发的新运动规划程序,称为dCC-RRT,它通过引入动态的原子间约束来调节受挫感,从而在亚状态之间的崎岖景观中导航。这些约束平衡了非天然接触和灵活性,并立即将运动重新导向空间上有利的构象。在一组由平均7.5 Å均方根偏差(RMSD)分隔的两种构象下测定的八种蛋白质的测试集上,我们的路径将Cα原子到目标构象的RMSD降低了78%,优于同类方法。然后,我们应用dCC-RRT来研究亲环素A活性位点中四个侧链的集体小规模运动如何在蛋白质中传播。dCC-RRT发现了一个由空间相互作用连接的残基的空间连续网络,以及将活性位点与最近提出的25 Å外的非经典衣壳结合位点连接起来的集体运动,从而使NMR和多温度晶体学实验合理化。总之,dCC-RRT可以揭示小幅度和大幅度运动的详细全原子分子机制。源代码和二进制文件可在https://github.com/ExcitedStates/KGS/上免费获取。