a College of Animal Science and Technology , Nanjing Agricultural University , Nanjing , China.
Autophagy. 2017 Aug 3;13(8):1364-1385. doi: 10.1080/15548627.2017.1327941. Epub 2017 Jun 9.
Oxidative stress-induced granulosa cell (GCs) death represents a common reason for follicular atresia. Follicle-stimulating hormone (FSH) has been shown to prevent GCs from oxidative injury, although the underlying mechanism remains to be elucidated. Here we first report that the suppression of autophagic cell death via some novel signaling effectors is engaged in FSH-mediated GCs protection against oxidative damage. The decline in GCs viability caused by oxidant injury was remarkably reduced following FSH treatment, along with impaired macroautophagic/autophagic flux under conditions of oxidative stress both in vivo and in vitro. Blocking of autophagy displayed similar levels of suppression in oxidant-induced cell death compared with FSH treatment, but FSH did not further improve survival of GCs pretreated with autophagy inhibitors. Further investigations revealed that activation of the phosphoinositide 3-kinase (PI3K)-AKT-MTOR (mechanistic target of rapamycin [serine/threonine kinase]) signaling pathway was required for FSH-mediated GCs survival from oxidative stress-induced autophagy. Additionally, the FSH-PI3K-AKT axis also downregulated the autophagic response by targeting FOXO1, whereas constitutive activation of FOXO1 in GCs not only abolished the protection from FSH, but also emancipated the autophagic process, from the protein level of MAP1LC3B-II to autophagic gene expression. Furthermore, FSH inhibited the production of acetylated FOXO1 and its interaction with Atg proteins, followed by a decreased level of autophagic cell death upon oxidative stress. Taken together, our findings suggest a new mechanism involving FSH-FOXO1 signaling in defense against oxidative damage to GCs by restraining autophagy, which may be a potential avenue for the clinical treatment of anovulatory disorders.
氧化应激诱导的颗粒细胞 (GCs) 死亡是卵泡闭锁的常见原因。已经表明,卵泡刺激素 (FSH) 可防止 GCs 受到氧化损伤,尽管其潜在机制仍有待阐明。在这里,我们首先报道,通过一些新的信号效应物抑制自噬细胞死亡参与了 FSH 介导的 GCs 对氧化损伤的保护作用。在体内和体外氧化应激条件下,FSH 处理后,氧化剂损伤引起的 GCs 活力下降明显减少,同时巨自噬/自噬流受损。与 FSH 处理相比,自噬阻断显示出对氧化剂诱导的细胞死亡的类似抑制水平,但 FSH 不能进一步提高用自噬抑制剂预处理的 GCs 的存活率。进一步的研究表明,激活磷脂酰肌醇 3-激酶 (PI3K)-AKT-mTOR(雷帕霉素 [丝氨酸/苏氨酸激酶] 的机制靶标)信号通路是 FSH 介导的 GCs 从氧化应激诱导的自噬中存活所必需的。此外,FSH-PI3K-AKT 轴还通过靶向 FOXO1 来下调自噬反应,而 GCs 中 FOXO1 的组成性激活不仅消除了 FSH 的保护作用,而且还从 MAP1LC3B-II 的蛋白水平到自噬基因表达,使自噬过程不受控制。此外,FSH 抑制乙酰化 FOXO1 的产生及其与 Atg 蛋白的相互作用,随后在氧化应激下自噬细胞死亡水平降低。总之,我们的研究结果表明,涉及 FSH-FOXO1 信号通路的新机制参与了通过抑制自噬来抵抗 GCs 的氧化损伤,这可能是治疗排卵障碍的一种潜在途径。
Antioxidants (Basel). 2025-6-20
Endocr Connect. 2025-7-12
Trends Biochem Sci. 2014-4
Int J Mol Sci. 2013-2-11
Proc Natl Acad Sci U S A. 2012-10-8