Suppr超能文献

Regulation of mammalian aspartate-4-decarboxylase: its possible role in oxaloacetate and energy metabolism.

作者信息

Rathod P K, Fellman J H

出版信息

Arch Biochem Biophys. 1985 May 1;238(2):447-51. doi: 10.1016/0003-9861(85)90185-7.

Abstract

A newly discovered enzyme in mammalian tissues, aspartate-4-decarboxylase (EC 4.1.1.12), catalyzes the exothermic conversion of aspartate to alanine and CO2. The occurrence of this enzyme poses at least two important questions. First, what is the purpose of such an enzyme in cell physiology? There are alternate ways to convert aspartate to alanine which are rapid and which conserve energy. Second, since the synthesis of aspartate is an energy-requiring process, how can the cell limit undue energy drain by this, seemingly pointless, beta-decarboxylation of aspartate? It is demonstrated that rat liver aspartate-4-decarboxylase is inhibited by acetyl-coenzyme A and stimulated by glutamate. These regulatory properties were predicted a priori. It was suggested that, in coordination with pyruvate carboxylase, aspartate-4-decarboxylase is important in regulating the metabolic fate of oxaloacetate and thus plays a role in determining the efficiency of carbohydrate metabolism. Furthermore, reciprocal regulation of rat liver pyruvate carboxylase and aspartate-4-decarboxylase would assure a limit on the extent of futile cycling that may occur between these enzymes.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验