College of Electronic and Information Engineering, Southwest University, Chongqing 400715, China.
Fang Lu Mesoscopic Optics and Quantum Electronics Laboratory, University of California, Los Angeles, California 90095, USA.
Nat Commun. 2017 Jun 9;8:15570. doi: 10.1038/ncomms15570.
Chaos has revolutionized the field of nonlinear science and stimulated foundational studies from neural networks, extreme event statistics, to physics of electron transport. Recent studies in cavity optomechanics provide a new platform to uncover quintessential architectures of chaos generation and the underlying physics. Here, we report the generation of dynamical chaos in silicon-based monolithic optomechanical oscillators, enabled by the strong and coupled nonlinearities of two-photon absorption induced Drude electron-hole plasma. Deterministic chaotic oscillation is achieved, and statistical and entropic characterization quantifies the chaos complexity at 60 fJ intracavity energies. The correlation dimension D is determined at 1.67 for the chaotic attractor, along with a maximal Lyapunov exponent rate of about 2.94 times the fundamental optomechanical oscillation for fast adjacent trajectory divergence. Nonlinear dynamical maps demonstrate the subharmonics, bifurcations and stable regimes, along with distinct transitional routes into chaos. This provides a CMOS-compatible and scalable architecture for understanding complex dynamics on the mesoscopic scale.
混沌彻底改变了非线性科学领域,并激发了从神经网络、极端事件统计到电子输运物理等基础研究。最近的腔光机械研究为揭示混沌产生的基本结构和潜在物理机制提供了新的平台。在这里,我们报告了在基于硅的单片光机械振荡器中产生动力学混沌,这得益于双光子吸收诱导的德拜电子-空穴等离子体的强耦合非线性。实现了确定性混沌振荡,统计和熵特征量化了 60 fJ 腔内能量下的混沌复杂性。混沌吸引子的关联维数 D 确定为 1.67,最大李亚普诺夫指数速率约为基本光机械振荡的 2.94 倍,用于快速相邻轨迹发散。非线性动力图显示了次谐波、分岔和稳定区域,以及进入混沌的不同过渡路径。这为在介观尺度上理解复杂动力学提供了一种与 CMOS 兼容且可扩展的架构。