Huang Yongjun, Flores Jaime Gonzalo Flor, Li Ying, Wang Wenting, Wang Di, Goldberg Noam, Zheng Jiangjun, Yu Mingbin, Lu Ming, Kutzer Michael, Rogers Daniel, Kwong Dim-Lee, Churchill Layne, Wong Chee Wei
School of Information and Communication Engineering, University of Electronic Science and Technology of China Chengdu 611731, China; Fang Lu Mesoscopic Optics and Quantum Electronics Laboratory, University of California, Los Angeles, CA 90095, USA; Optical Nanostructures Laboratory, Columbia University, New York, NY 10027, USA.
Fang Lu Mesoscopic Optics and Quantum Electronics Laboratory, University of California, Los Angeles, CA 90095, USA.
Laser Photon Rev. 2020 May;14(5). doi: 10.1002/lpor.201800329. Epub 2020 Apr 8.
Modern navigation systems integrate the global positioning system (GPS) with an inertial navigation system (INS), which complement each other for correct attitude and velocity determination. The core of the INS integrates accelerometers and gyroscopes used to measure forces and angular rate in the vehicular inertial reference frame. With the help of gyroscopes and by integrating the acceleration to compute velocity and distance, precision and compact accelerometers with sufficient accuracy can provide small-error location determination. Solid-state implementations, through coherent readout, can provide a platform for high performance acceleration detection. In contrast to prior accelerometers using piezoelectric or capacitive readout techniques, optical readout provides narrow-linewidth high-sensitivity laser detection along with low-noise resonant optomechanical transduction near the thermodynamical limits. Here an optomechanical inertial sensor with an 8.2 μg Hz velocity random walk (VRW) at an acquisition rate of 100 Hz and 50.9 μg bias instability is demonstrated, suitable for applications, such as, inertial navigation, inclination sensing, platform stabilization, and/or wearable device motion detection. Driven into optomechanical sustained-oscillation, the slot photonic crystal cavity provides radio-frequency readout of the optically-driven transduction with an enhanced 625 μg Hz sensitivity. Measuring the optomechanically-stiffened oscillation shift, instead of the optical transmission shift, provides a 220× VRW enhancement over pre-oscillation mode detection.
现代导航系统将全球定位系统(GPS)与惯性导航系统(INS)集成在一起,二者相互补充以确定正确的姿态和速度。INS的核心集成了加速度计和陀螺仪,用于测量车辆惯性参考系中的力和角速率。借助陀螺仪并通过对加速度进行积分来计算速度和距离,精度足够高的精密紧凑型加速度计可以实现小误差定位。固态实现方式通过相干读出,可以提供一个用于高性能加速度检测的平台。与采用压电或电容读出技术的传统加速度计不同,光学读出提供窄线宽高灵敏度激光检测以及接近热力学极限的低噪声谐振光机械转换。在此展示了一种光机械惯性传感器,其在100 Hz采集速率下的速度随机游走(VRW)为8.2 μg Hz,偏置不稳定性为50.9 μg,适用于惯性导航、倾斜传感、平台稳定和/或可穿戴设备运动检测等应用。驱动进入光机械持续振荡状态后,狭缝光子晶体腔通过增强的625 μg Hz灵敏度对光驱动转换进行射频读出。测量光机械增强的振荡位移,而不是光传输位移,相较于振荡前模式检测,可使VRW提高220倍。