Faculty of Physics, VCQ, University of Vienna, Boltzmanngasse 5, 1090, Vienna, Austria.
Lyman Laboratory, Harvard University, Department of Physics, 17 Oxford Street, Cambridge, MA, 02138, USA.
Angew Chem Int Ed Engl. 2017 Aug 28;56(36):10947-10951. doi: 10.1002/anie.201704916. Epub 2017 Jul 28.
It has recently been shown that matter-wave interferometry can be used to imprint a periodic nanostructure onto a molecular beam, which provides a highly sensitive tool for beam displacement measurements. Herein, we used this feature to measure electronic properties of provitamin A, vitamin E, and vitamin K1 in the gas phase for the first time. The shift of the matter-wave fringes in a static electric field encodes the molecular susceptibility and the time-averaged dynamic electric dipole moment. The dependence of the fringe pattern on the intensity of the central light-wave diffraction grating was used to determine the molecular optical polarizability. Comparison of our experimental findings with molecular dynamics simulations and density functional theory provides a rich picture of the electronic structures and dynamics of these biomolecules in the gas phase with β-carotene as a particularly interesting example.
最近已经表明,物质波干涉仪可用于在分子束上压印周期性纳米结构,这为梁位移测量提供了一种高度灵敏的工具。在此,我们首次使用该特性来测量气相中的前维生素 A、维生素 E 和维生素 K1 的电子性质。在静态电场中物质波条纹的位移编码了分子的磁化率和时间平均动态电偶极矩。条纹图案对中心光波衍射光栅强度的依赖性用于确定分子的光学极化率。我们的实验结果与分子动力学模拟和密度泛函理论的比较为这些生物分子在气相中的电子结构和动力学提供了丰富的图像,其中β-胡萝卜素是一个特别有趣的例子。