Cazé Romain D, Jarvis Sarah, Foust Amanda J, Schultz Simon R
Center for Neurotechnology and Department of Bioengineering, Imperial College London, London SW7 2AZ, U.K.
Neural Comput. 2017 Sep;29(9):2511-2527. doi: 10.1162/NECO_a_00989. Epub 2017 Jun 9.
Hearing, vision, touch: underlying all of these senses is stimulus selectivity, a robust information processing operation in which cortical neurons respond more to some stimuli than to others. Previous models assume that these neurons receive the highest weighted input from an ensemble encoding the preferred stimulus, but dendrites enable other possibilities. Nonlinear dendritic processing can produce stimulus selectivity based on the spatial distribution of synapses, even if the total preferred stimulus weight does not exceed that of nonpreferred stimuli. Using a multi-subunit nonlinear model, we demonstrate that stimulus selectivity can arise from the spatial distribution of synapses. We propose this as a general mechanism for information processing by neurons possessing dendritic trees. Moreover, we show that this implementation of stimulus selectivity increases the neuron's robustness to synaptic and dendritic failure. Importantly, our model can maintain stimulus selectivity for a larger range of loss of synapses or dendrites than an equivalent linear model. We then use a layer 2/3 biophysical neuron model to show that our implementation is consistent with two recent experimental observations: (1) one can observe a mixture of selectivities in dendrites that can differ from the somatic selectivity, and (2) hyperpolarization can broaden somatic tuning without affecting dendritic tuning. Our model predicts that an initially nonselective neuron can become selective when depolarized. In addition to motivating new experiments, the model's increased robustness to synapses and dendrites loss provides a starting point for fault-resistant neuromorphic chip development.
听觉、视觉、触觉:所有这些感官的基础都是刺激选择性,这是一种强大的信息处理操作,其中皮层神经元对某些刺激的反应比对其他刺激的反应更强烈。以往的模型假定这些神经元从编码首选刺激的神经元集合中接收到权重最高的输入,但树突带来了其他可能性。即使总的首选刺激权重不超过非首选刺激的权重,非线性树突处理也可以基于突触的空间分布产生刺激选择性。我们使用一个多亚基非线性模型证明,刺激选择性可以源自突触的空间分布。我们将此提议为具有树突的神经元进行信息处理的一种通用机制。此外,我们表明这种刺激选择性的实现方式提高了神经元对突触和树突故障的鲁棒性。重要的是,与等效的线性模型相比,我们的模型在更大范围的突触或树突损失情况下仍能保持刺激选择性。然后,我们使用一个2/3层生物物理神经元模型来表明我们的实现方式与最近的两项实验观察结果一致:(1)可以在树突中观察到与体细胞选择性不同的选择性混合,(2)超极化可以拓宽体细胞调谐而不影响树突调谐。我们的模型预测,一个最初无选择性的神经元在去极化时可以变得具有选择性。除了激发新的实验外,该模型对突触和树突损失增强的鲁棒性为抗故障神经形态芯片的开发提供了一个起点。