Suppr超能文献

非agenarians再入院的预测因素:美国外科医师学会国家外科质量改进项目数据集分析。 注:你原文中的“nonagenarians”可能有误,一般指九十多岁的人,这里可能是想表达“老年人”之类的词,比如“non - elderly”等,但按照你提供的原文准确翻译就是上述内容。

Predictors of readmission in nonagenarians: analysis of the American College of Surgeons National Surgical Quality Improvement Project dataset.

作者信息

Hothem Zachary, Baker Dustin, Jenkins Christina S, Douglas Jason, Callahan Rose E, Shuell Catherine C, Long Graham W, Welsh Robert J

机构信息

Department of Surgery, Beaumont Health, Royal Oak, Michigan.

Department of Surgery, Beaumont Health, Royal Oak, Michigan.

出版信息

J Surg Res. 2017 Jun 1;213:32-38. doi: 10.1016/j.jss.2017.02.019. Epub 2017 Feb 24.

Abstract

BACKGROUND

Increased longevity has led to more nonagenarians undergoing elective surgery. Development of predictive models for hospital readmission may identify patients who benefit from preoperative optimization and postoperative transition of care intervention. Our goal was to identify significant predictors of 30-d readmission in nonagenarians undergoing elective surgery.

METHODS

Nonagenarians undergoing elective surgery from January 2011 to December 2012 were identified using the American College of Surgeons National Surgical Quality Improvement Project participant use data files. This population was randomly divided into a 70% derivation cohort for model development and 30% validation cohort. Using multivariate step-down regression, predictive models were developed for 30-d readmission.

RESULTS

Of 7092 nonagenarians undergoing elective surgery, 798 (11.3%) were readmitted within 30 d. Factors significant in univariate analysis were used to develop predictive models for 30-d readmissions. Diabetes (odds ratio [OR]: 1.51, 95% confidence interval [CI]: 1.24-1.84), dialysis dependence (OR: 2.97, CI: 1.77-4.99), functional status (OR: 1.52, CI: 1.29-1.79), American Society of Anesthesiologists class II or higher (American Society of Anesthesiologist physical status classification system; OR: 1.80, CI: 1.42-2.28), operative time (OR: 1.05, CI: 1.02-1.08), myocardial infarction (OR: 5.17, CI: 3.38-7.90), organ space surgical site infection (OR: 8.63, CI: 4.04-18.4), wound disruption (OR: 14.3, CI: 4.80-42.9), pneumonia (OR: 8.59, CI: 6.17-12.0), urinary tract infection (OR: 3.88, CI: 3.02-4.99), stroke (OR: 6.37, CI: 3.47-11.7), deep venous thrombosis (OR: 5.96, CI: 3.70-9.60), pulmonary embolism (OR: 20.3, CI: 9.7-42.5), and sepsis (OR: 13.1, CI: 8.57-20.1), septic shock (OR: 43.8, CI: 18.2-105.0), were included in the final model. This model had a c-statistic of 0.73, indicating a fair association of predicted probabilities with observed outcomes. However, when applied to the validation cohort, the c-statistic dropped to 0.69, and six variables lost significance.

CONCLUSIONS

A reliable predictive model for readmission in nonagenarians undergoing elective surgery remains elusive. Investigation into other determinants of surgical outcomes, including social factors and access to skilled home care, might improve model predictability, identify areas for intervention to prevent readmission, and improve quality of care.

摘要

背景

预期寿命的延长导致越来越多的九旬老人接受择期手术。开发用于预测住院再入院的模型可能会识别出那些能从术前优化和术后护理过渡干预中获益的患者。我们的目标是确定接受择期手术的九旬老人30天再入院的显著预测因素。

方法

使用美国外科医师学会国家外科质量改进项目参与者使用数据文件,确定2011年1月至2012年12月期间接受择期手术的九旬老人。该人群被随机分为70%的推导队列用于模型开发和30%的验证队列。使用多变量逐步回归法开发30天再入院的预测模型。

结果

在7092名接受择期手术的九旬老人中,798人(11.3%)在30天内再次入院。单变量分析中有显著意义的因素被用于开发30天再入院的预测模型。糖尿病(比值比[OR]:1.51,95%置信区间[CI]:1.24 - 1.84)、透析依赖(OR:2.97,CI:1.77 - 4.99)、功能状态(OR:1.52,CI:1.29 - 1.79)、美国麻醉医师协会分级II级或更高(美国麻醉医师协会身体状况分类系统;OR:1.80,CI:1.42 - 2.28)、手术时间(OR:1.05,CI:1.02 - 1.08)、心肌梗死(OR:5.17,CI:3.38 - 7.90)、器官腔隙手术部位感染(OR:8.63,CI:4.04 - 18.4)、伤口裂开(OR:14.3,CI:4.80 - 42.9)、肺炎(OR:8.59,CI:6.17 - 12.0)、尿路感染(OR:3.88,CI:3.02 - 4.99)、中风(OR:6.37,CI:3.47 - 11.7)、深静脉血栓形成(OR:5.96,CI:3.70 - 9.60)、肺栓塞(OR:20.3,CI:9.7 - 42.5)和脓毒症(OR:13.1,CI:8.57 - 20.1)、感染性休克(OR:43.8,CI:18.2 - 105.0),被纳入最终模型。该模型的c统计量为0.73,表明预测概率与观察结果之间的关联一般。然而,当应用于验证队列时,c统计量降至0.69,六个变量失去显著性。

结论

对于接受择期手术的九旬老人,可靠的再入院预测模型仍然难以捉摸。对手术结果的其他决定因素进行调查,包括社会因素和获得熟练的家庭护理服务,可能会提高模型的可预测性,确定预防再入院的干预领域,并改善护理质量。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验