Suppr超能文献

均匀分散、抗积碳核@双层结构 Co@SiO@C:改性内孔壁石墨碳对费托合成中 C 选择性的影响。

Uniformity dispersive, anti-coking core@double-shell-structured Co@SiO@C: Effect of graphitic carbon modified interior pore-walls on C selectivity in Fischer-Tropsch synthesis.

机构信息

Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China.

School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China.

出版信息

J Colloid Interface Sci. 2017 Nov 1;505:325-331. doi: 10.1016/j.jcis.2017.05.096. Epub 2017 May 26.

Abstract

Highly dispersed Co nanoparticles with proper interaction with mesoporous support are benefit for the suppression of self-aggregation, which enhances its Fischer-Tropsch synthesis (FTs) activity. However, construct such Co based supported catalysts with high activity and stability in FTs by conventional mesoporous support, especially the common used mesoporous SiO, has proven challenging due to their undesirable hydrothermal stability and poor reducibility. Herein, we developed a unique core@double-shell Co@SiO@C structure with optimized interface of the mesoporous catalyst by introducing graphitic carbon layer which can weaken the interaction between metallic Co and silica. Transmission electron microscopy (TEM) images, together with Nitrogen adsorption-desorption characterization result, proved the well-defined core@double-shell structure of graphitic carbon modified catalyst. The Co@SiO@C-2 material produced after optimizing the calcination temperature to 600°C process large surface area and pore volume, and show higher CO conversion (62.2%) and C selectivity (62.2%) than CoO@SiO in a period of 100h. The significant improvement in the FTS performance of Co@SiO@C is not only attributed to a good synergistic effect by a combination of the Co dispersion and reducibility. The unique core@double-shell structure with graphitic carbon modified interior pore-walls also contributes to the formation of heavy hydrocarbon, as well as the protecting with the metallic Co particles away from oxidation and aggregation.

摘要

高度分散的 Co 纳米粒子与介孔载体适当相互作用有利于抑制自团聚,从而提高其费托合成(FTs)活性。然而,通过传统的介孔载体(尤其是常用的介孔 SiO)构建具有高活性和 FTs 稳定性的 Co 基负载型催化剂,由于其不理想的水热稳定性和较差的还原性,已经被证明具有挑战性。在此,我们通过引入石墨碳层开发了一种独特的核@双壳 Co@SiO@C 结构,优化了介孔催化剂的界面,该碳层可以削弱金属 Co 和二氧化硅之间的相互作用。透射电子显微镜(TEM)图像以及氮气吸附-脱附特性证明了石墨碳修饰催化剂的良好定义的核@双壳结构。在将煅烧温度优化至 600°C 后,Co@SiO@C-2 材料产生了较大的比表面积和孔体积,并且在 100 小时内显示出比 CoO@SiO 更高的 CO 转化率(62.2%)和 C 选择性(62.2%)。Co@SiO@C 在 FTS 性能方面的显著提高不仅归因于 Co 分散度和还原性的协同作用,还归因于独特的核@双壳结构和具有石墨碳修饰的内部孔壁。这种结构有利于形成重质烃,并且可以保护金属 Co 颗粒免受氧化和聚集。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验