Gray Sarah M, Aylor Kevin W, Barrett Eugene J
Department of Pharmacology, University of Virginia, Charlottesville, VA, USA.
Division of Endocrinology & Metabolism, Department of Medicine, University of Virginia, 450 Ray C. Hunt Drive, P.O. Box 801410, Charlottesville, VA, 22908, USA.
Diabetologia. 2017 Aug;60(8):1512-1521. doi: 10.1007/s00125-017-4285-4. Epub 2017 Jun 11.
AIMS/HYPOTHESIS: For circulating insulin to act on the brain it must cross the blood-brain barrier (BBB). Remarkably little is known about how circulating insulin crosses the BBB's highly restrictive brain endothelial cells (BECs). Therefore, we examined potential mechanisms regulating BEC insulin uptake, signalling and degradation during BEC transcytosis, and how transport is affected by a high-fat diet (HFD) and by astrocyte activity.
I-TyrA14-insulin uptake and transcytosis, and the effects of insulin receptor (IR) blockade, inhibition of insulin signalling, astrocyte stimulation and an HFD were tested using purified isolated BECs (iBECs) in monoculture and co-cultured with astrocytes.
At physiological insulin concentrations, the IR, not the IGF-1 receptor, facilitated BEC insulin uptake, which required lipid raft-mediated endocytosis, but did not require insulin action on phosphoinositide-3-kinase (PI3K) or mitogen-activated protein kinase kinase (MEK). Feeding rats an HFD for 4 weeks decreased iBEC insulin uptake and increased NF-κB binding activity without affecting insulin PI3K signalling, IR expression or content, or insulin degrading enzyme expression. Using an in vitro BBB (co-culture of iBECs and astrocytes), we found insulin was not degraded during transcytosis, and that stimulating astrocytes with L-glutamate increased transcytosis, while inhibiting nitric oxide synthase decreased insulin transcytosis.
CONCLUSIONS/INTERPRETATION: Insulin crosses the BBB intact via an IR-specific, vesicle-mediated transport process in the BECs. HFD feeding, nitric oxide inhibition and astrocyte stimulation can regulate BEC insulin uptake and transcytosis.
目的/假设:循环胰岛素要作用于大脑,必须穿过血脑屏障(BBB)。然而,关于循环胰岛素如何穿过血脑屏障中高度限制性的脑内皮细胞(BECs),我们知之甚少。因此,我们研究了在BECs转胞吞过程中调节BEC胰岛素摄取、信号传导和降解的潜在机制,以及高脂饮食(HFD)和星形胶质细胞活性如何影响转运。
使用纯化的分离BECs(iBECs)进行单培养并与星形胶质细胞共培养,测试I-TyrA14-胰岛素摄取和转胞吞作用,以及胰岛素受体(IR)阻断、胰岛素信号传导抑制、星形胶质细胞刺激和高脂饮食的影响。
在生理胰岛素浓度下,促进BEC胰岛素摄取的是IR,而非IGF-1受体,这需要脂筏介导的内吞作用,但不需要胰岛素对磷酸肌醇-3-激酶(PI3K)或丝裂原活化蛋白激酶激酶(MEK)的作用。给大鼠喂食4周高脂饮食会降低iBEC胰岛素摄取并增加NF-κB结合活性,而不影响胰岛素PI3K信号传导、IR表达或含量,以及胰岛素降解酶表达。使用体外血脑屏障(iBECs和星形胶质细胞的共培养),我们发现胰岛素在转胞吞过程中不会被降解,用L-谷氨酸刺激星形胶质细胞会增加转胞吞作用,而抑制一氧化氮合酶会降低胰岛素转胞吞作用。
结论/解读:胰岛素通过BECs中特定于IR的囊泡介导转运过程完整穿过血脑屏障。高脂饮食喂养、一氧化氮抑制和星形胶质细胞刺激可调节BEC胰岛素摄取和转胞吞作用。