Suppr超能文献

Oxidation phenotype and the metabolism and action of beta-blockers.

作者信息

Lennard M S

出版信息

Klin Wochenschr. 1985 Apr 1;63(7):285-92. doi: 10.1007/BF01731972.

Abstract

Variability in response to some drugs such as debrisoquine can be attributed to genetic polymorphism of their oxidative metabolism. Most beta-adrenoceptor antagonists (beta-blockers) are extensively metabolised via oxidative routes. Anecdotal reports of high plasma concentrations of certain beta-blockers in poor metabolisers of debrisoquine (PM) have claimed that their oxidation is under polymorphic control. Controlled studies have shown that debrisoquine oxidation phenotype is a major determinant of the metabolism, pharmacokinetics and some of the pharmacological actions of metoprolol, bufuralol and timolol. The PM phenotype is associated with an increased drug bioavailability, a prolongation of elimination half-life and more intense and sustained beta-blockade. Phenotypic differences were also noted in the pharmacokinetics of the enantiomers of metoprolol. In vivo and in vitro work has identified some of the metabolic pathways which are subject to the defect, namely, the alpha-hydroxylation and the O-dealkylation of metoprolol and the 1'-hydroxylation of bufuralol. In contrast, the pharmacokinetics and pharmacodynamics of propranolol which is also extensively oxidised, are not related to debrisoquine polymorphism, although 4'-hydroxypropranolol formation is lowered in PM subjects. The clinical significance of impaired elimination of beta-blockers is unclear. If standard doses of beta-blockers are used in PM subjects, they may be susceptible to concentration-related adverse reactions and they may also require lower and less frequent dosing for control of angina pectoris.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验