Suppr超能文献

报告:使用计算机视觉对疟原虫进行无监督识别。

Report: Unsupervised identification of malaria parasites using computer vision.

作者信息

Khan Najeed Ahmed, Pervaz Hassan, Latif Arsalan, Musharaff Ayesha

机构信息

NED University of Engineering &Technology, Karachi, Pakistan.

出版信息

Pak J Pharm Sci. 2017 Jan;30(1):223-227.

Abstract

Malaria in human is a serious and fatal tropical disease. This disease results from Anopheles mosquitoes that are infected by Plasmodium species. The clinical diagnosis of malaria based on the history, symptoms and clinical findings must always be confirmed by laboratory diagnosis. Laboratory diagnosis of malaria involves identification of malaria parasite or its antigen / products in the blood of the patient. Manual diagnosis of malaria parasite by the pathologists has proven to become cumbersome. Therefore, there is a need of automatic, efficient and accurate identification of malaria parasite. In this paper, we proposed a computer vision based approach to identify the malaria parasite from light microscopy images. This research deals with the challenges involved in the automatic detection of malaria parasite tissues. Our proposed method is based on the pixel-based approach. We used K-means clustering (unsupervised approach) for the segmentation to identify malaria parasite tissues.

摘要

疟疾是一种严重且致命的热带疾病。这种疾病由感染疟原虫的按蚊传播。基于病史、症状和临床检查结果的疟疾临床诊断必须始终通过实验室诊断来确认。疟疾的实验室诊断包括在患者血液中识别疟原虫或其抗原/产物。病理学家手动诊断疟原虫已被证明很繁琐。因此,需要自动、高效且准确地识别疟原虫。在本文中,我们提出了一种基于计算机视觉的方法,用于从光学显微镜图像中识别疟原虫。本研究探讨了自动检测疟原虫组织所涉及的挑战。我们提出的方法基于基于像素的方法。我们使用K均值聚类(无监督方法)进行分割以识别疟原虫组织。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验