Suppr超能文献

通过等离子体电解氧化(PEO)提高可生物降解镁合金的力学性能和耐腐蚀性。

Enhanced mechanical properties and increased corrosion resistance of a biodegradable magnesium alloy by plasma electrolytic oxidation (PEO).

作者信息

White Leon, Koo Youngmi, Neralla Sudheer, Sankar Jagannathan, Yun Yeoheung

机构信息

FIT BEST Laboratory, Engineering Research Center, Department of Chemical, Biological, and Bio Engineering, North Carolina A&T State University, Greensboro, NC 27411, USA.

Jet-Hot LLC, Burlington, NC 27215, USA.

出版信息

Mater Sci Eng B Solid State Mater Adv Technol. 2016 Jun;208:39-46. doi: 10.1016/j.mseb.2016.02.005. Epub 2016 Feb 26.

Abstract

We report the enhanced mechanical properties of AZ31 magnesium alloys by plasma electrolytic oxidation (PEO) coating in NaOH, NaSiO, KF and NaHPO·2HO containing electrolytes. Mechanical properties including wear resistance, surface hardness and elastic modulus were increased for PEO-coated AZ31 Mg alloys (PEO-AZ31). DC polarization in Hank's solution indicating that the corrosion resistance significantly increased for PEO-coating in KF-contained electrolyte. Based on these results, the PEO coating method shows promising potential for use in biodegradable implant applications where tunable corrosion and mechanical properties are needed.

摘要

我们报道了通过在含有NaOH、NaSiO、KF和NaHPO·2HO的电解质中进行等离子体电解氧化(PEO)涂层处理来增强AZ31镁合金的力学性能。对于经过PEO涂层处理的AZ31镁合金(PEO-AZ31),其包括耐磨性、表面硬度和弹性模量在内的力学性能得到了提高。在汉克溶液中的直流极化表明,在含KF的电解质中进行PEO涂层处理时,耐腐蚀性显著提高。基于这些结果,PEO涂层方法在需要可调节腐蚀和力学性能的生物可降解植入应用中显示出有前景的潜力。

相似文献

1
Enhanced mechanical properties and increased corrosion resistance of a biodegradable magnesium alloy by plasma electrolytic oxidation (PEO).
Mater Sci Eng B Solid State Mater Adv Technol. 2016 Jun;208:39-46. doi: 10.1016/j.mseb.2016.02.005. Epub 2016 Feb 26.
2
Mussel-inspired functionalization of PEO/PCL composite coating on a biodegradable AZ31 magnesium alloy.
Colloids Surf B Biointerfaces. 2016 May 1;141:327-337. doi: 10.1016/j.colsurfb.2016.02.004. Epub 2016 Feb 4.
3
In vitro degradation behavior and cytocompatibility of biodegradable AZ31 alloy with PEO/HT composite coating.
Colloids Surf B Biointerfaces. 2015 Apr 1;128:44-54. doi: 10.1016/j.colsurfb.2015.02.011. Epub 2015 Feb 14.
4
5
In vitro degradation, hemolysis, and cytocompatibility of PEO/PLLA composite coating on biodegradable AZ31 alloy.
J Biomed Mater Res B Appl Biomater. 2015 Feb;103(2):342-54. doi: 10.1002/jbm.b.33208. Epub 2014 May 29.
6
Hemocompatibility and selective cell fate of polydopamine-assisted heparinized PEO/PLLA composite coating on biodegradable AZ31 alloy.
Colloids Surf B Biointerfaces. 2014 Sep 1;121:451-60. doi: 10.1016/j.colsurfb.2014.06.036. Epub 2014 Jun 21.
8
Advances in amelioration of plasma electrolytic oxidation coatings on biodegradable magnesium and alloys.
Heliyon. 2024 Jan 11;10(4):e24348. doi: 10.1016/j.heliyon.2024.e24348. eCollection 2024 Feb 29.
10
Corrosion resistance of a composite polymeric coating applied on biodegradable AZ31 magnesium alloy.
Acta Biomater. 2013 Nov;9(10):8660-70. doi: 10.1016/j.actbio.2013.02.036. Epub 2013 Feb 28.

引用本文的文献

1
Tribocorrosion and Surface Protection Technology of Titanium Alloys: A Review.
Materials (Basel). 2023 Dec 22;17(1):65. doi: 10.3390/ma17010065.
6
Plasma Electrolytic Oxidation (PEO) Process-Processing, Properties, and Applications.
Nanomaterials (Basel). 2021 May 22;11(6):1375. doi: 10.3390/nano11061375.
7
Influence of Cu Ions on the Corrosion Resistance of AZ31 Magnesium Alloy with Microarc Oxidation.
Materials (Basel). 2020 Jun 10;13(11):2647. doi: 10.3390/ma13112647.
8
Ag Nanoparticle-Decorated Oxide Coatings Formed via Plasma Electrolytic Oxidation on ZrNb Alloy.
Materials (Basel). 2019 Nov 13;12(22):3742. doi: 10.3390/ma12223742.
9
Corrosion Resistance and Apatite-Forming Ability of Composite Coatings formed on Mg-Al-Zn-Ca Alloys.
Materials (Basel). 2019 Jul 14;12(14):2262. doi: 10.3390/ma12142262.
10
Chelating agent-assisted in situ LDH growth on the surface of magnesium alloy.
Sci Rep. 2018 Nov 6;8(1):16409. doi: 10.1038/s41598-018-34751-7.

本文引用的文献

1
In vivo biocompatibility of Mg implants surface modified by nanostructured merwinite/PEO.
J Mater Sci Mater Med. 2015 May;26(5):184. doi: 10.1007/s10856-015-5514-3. Epub 2015 Apr 17.
2
In vivo study of magnesium plate and screw degradation and bone fracture healing.
Acta Biomater. 2015 May;18:262-9. doi: 10.1016/j.actbio.2015.02.010. Epub 2015 Feb 21.
3
4
In vivo study of nanostructured akermanite/PEO coating on biodegradable magnesium alloy for biomedical applications.
J Biomed Mater Res A. 2015 May;103(5):1798-808. doi: 10.1002/jbm.a.35324. Epub 2014 Sep 16.
5
Flow-induced corrosion behavior of absorbable magnesium-based stents.
Acta Biomater. 2014 Dec;10(12):5213-5223. doi: 10.1016/j.actbio.2014.08.034. Epub 2014 Sep 6.
6
Role of magnesium ions on osteogenic response in bone marrow stromal cells.
Connect Tissue Res. 2014 Aug;55 Suppl 1:155-9. doi: 10.3109/03008207.2014.923877.
7
Osseointegration: an update.
J Indian Prosthodont Soc. 2013 Mar;13(1):2-6. doi: 10.1007/s13191-013-0252-z. Epub 2013 Jan 11.
9
Laser surface treatment for porous and textured Ca-P bio-ceramic coating on Ti-6Al-4V.
Biomed Mater. 2007 Dec;2(4):274-81. doi: 10.1088/1748-6041/2/4/011. Epub 2007 Nov 13.
10
Exploring and engineering the cell surface interface.
Science. 2005 Nov 18;310(5751):1135-8. doi: 10.1126/science.1106587.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验