同群效应和优先招募在应答者驱动抽样中的识别。

Identification of Homophily and Preferential Recruitment in Respondent-Driven Sampling.

机构信息

Department of Biostatistics, Yale School of Public Health, New Haven, Connecticut.

Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut.

出版信息

Am J Epidemiol. 2018 Jan 1;187(1):153-160. doi: 10.1093/aje/kwx208.

Abstract

Respondent-driven sampling (RDS) is a link-tracing procedure used in epidemiologic research on hidden or hard-to-reach populations in which subjects recruit others via their social networks. Estimates from RDS studies may have poor statistical properties due to statistical dependence in sampled subjects' traits. Two distinct mechanisms account for dependence in an RDS study: homophily, the tendency for individuals to share social ties with others exhibiting similar characteristics, and preferential recruitment, in which recruiters do not recruit uniformly at random from their network alters. The different effects of network homophily and preferential recruitment in RDS studies have been a source of confusion and controversy in methodological and empirical research in epidemiology. In this work, we gave formal definitions of homophily and preferential recruitment and showed that neither is identified in typical RDS studies. We derived nonparametric identification regions for homophily and preferential recruitment and showed that these parameters were not identified unless the network took a degenerate form. The results indicated that claims of homophily or recruitment bias measured from empirical RDS studies may not be credible. We applied our identification results to a study involving both a network census and RDS on a population of injection drug users in Hartford, Connecticut (2012-2013).

摘要

应答驱动抽样(RDS)是一种在隐藏或难以接触的人群中进行流行病学研究的链接追踪程序,其中通过社交网络,受访者招募其他人。由于抽样对象特征的统计依赖性,RDS 研究的估计可能具有较差的统计特性。RDS 研究中的依赖性有两种不同的机制:同质性,即个体与具有相似特征的其他人共享社会关系的倾向,以及优先招募,即招募者不从其网络中随机均匀地招募,改变了招募方式。在流行病学的方法学和实证研究中,网络同质性和优先招募的不同影响一直是混淆和争议的来源。在这项工作中,我们给出了同质性和优先招募的正式定义,并表明在典型的 RDS 研究中都无法识别它们。我们推导出了同质性和优先招募的非参数识别区域,并表明除非网络采取退化形式,否则这些参数无法识别。结果表明,从经验 RDS 研究中衡量的同质性或招募偏差的说法可能不可信。我们将我们的识别结果应用于一项涉及康涅狄格州哈特福德市注射吸毒者的网络普查和 RDS 的研究(2012-2013 年)。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索